Meson Compostions: Difference Between π0 and η

  • Context: Graduate 
  • Thread starter Thread starter Shen712
  • Start date Start date
  • Tags Tags
    Meson Particle physics
Click For Summary
SUMMARY

The discussion clarifies the differences in the quark compositions of the π0 and η mesons. The π0 is represented as (uu_bar - dd_bar)/√2, while the η meson is expressed as (uu_bar + dd_bar)/√2. The negative sign in the π0 composition arises from its classification as part of an isospin triplet, whereas the η meson is an isospin singlet. This distinction is rooted in the flavor symmetry model, specifically SU(2) and SU(3) representations, which dictate the linear combinations of quark states.

PREREQUISITES
  • Understanding of quark composition and meson classification
  • Familiarity with SU(2) and SU(3) flavor symmetry
  • Knowledge of isospin and its implications in particle physics
  • Basic proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Study the implications of SU(2) and SU(3) symmetries in particle physics
  • Explore the concept of isospin and its role in meson classification
  • Learn about the construction of mesons from quark-antiquark pairs
  • Review the mathematical representation of quark states using LaTeX
USEFUL FOR

Particle physicists, students of quantum mechanics, and anyone interested in the properties and classifications of mesons, particularly in the context of flavor symmetries.

Shen712
Messages
12
Reaction score
0
The composition of the π0 is (uu_bar - dd_bar/√2; while the composition of the η meson is (uu_bar + dd_bar)/√2. Why is there a - sign in π0 while is there a + sign in η? How are the signs determined?
By the way, can I type Latex symbols on this site? I tried to type the anti up quark by typing \overline{u}, but it did not show what I wanted. How should I type it?
 
Last edited by a moderator:
Physics news on Phys.org
Shen712 said:
By the way, can I type Latex symbols on this site? I tried to type the anti up quark by typing \overline{u}, but it did not show what I wanted. How should I type it?
Yes, LaTeX is supported here. See our tutorial here -- https://www.physicsforums.com/help/latexhelp/.
 
Because ##\pi## and ##\eta## are different linear combinations of states in flavour space.
 
Orodruin said:
Because ##\pi## and ##\eta## are different linear combinations of states in flavour space.
Can you explain more clearly? How are the linear compositions different? And how does one lead to a - sign while the other lead to a + sign?
 
They are in different flavour states. It is that simple. If you have two vectors x and y, x+y is a different linear combination than x-y. In this case, one (##\pi_0##) is part of an isospin triplet and the other (##\eta##) is an isospin singlet.
 
In the flavor symmetric model, aka the down and up quarks are in an SU(2) doublet (aka 2-dimensional representation), which is a good approximate symmetry as long as the quarks are massless m_u , m_d \approx 0, when you go to build mesons by combining the doublet with the anti-doublet you have:
\textbf{2} \otimes \bar{\textbf{2}} = \textbf{3} \oplus \textbf{1}
The (iso)triplet you get contains the pions (well with some combinations for the charged pions*): \pi^{\pm} , \pi^0 since it's built from the combination : \bar{q} \sigma^i q with sigma the pauli matrices, while the (iso)singlet is the \eta meson and it's constructed from the identity matrix (not pauli-matrices): \bar{q} \textbf{1} q. The isotriplet is symmetric under the exchange u\leftrightarrow d while the isosinglet is antisymmetric (similar to spin-1/2 from quantum mechanincs).
This is a simplified explanation (yet it works for your case). The actual (physical) \eta states are produced as a mixture of states. These states are predicted by flavor SU(3) symmetry (adding strange quarks in, since they are also quite light), they are in an iso-octet and iso-singlet: \textbf{3} \otimes \bar{\textbf{3}} = \textbf{8} \oplus \textbf{1}. Because the u,d,s quarks are not exactly massless, the SU(3) symmetry is not exact and mixings happen.

*In fact I wrote the charged pions immediately, but the quark composition you get out of this procedure is for \textbf{3}:
\phi^1 = \frac{1}{\sqrt{2}} (u\bar{d} + \bar{u} d) ,~~\phi^2= \frac{i}{\sqrt{2}} (u\bar{d} - \bar{u}d) ,~~\phi^3= \frac{1}{\sqrt{2}} (u\bar{u} - d \bar{d} )
The charged pions come from combining \phi^{1,2} ... in a similar manner as you built the ladder operators in spin-1/2 case... \pi^\pm = \frac{1}{\sqrt{2}} ( \phi^1 \mp i \phi^2)
 
Last edited:
Shen712 said:
The composition of the π0 is (uu_bar - dd_bar/√2; while the composition of the η meson is (uu_bar + dd_bar)/√2. Why is there a - sign in π0 while is there a + sign in η? How are the signs determined?
By the way, can I type Latex symbols on this site? I tried to type the anti up quark by typing \overline{u}, but it did not show what I wanted. How should I type it?
Where is the s \bar{s} component of your \eta? Scalar mesons (i.e., the J^{P} = 0^{-} representation of the Lorentz group) contain 2 \eta-particles: the T = S = 0 member of the SU(3) octet, usually denoted by \eta_{8} and having the quarks content \eta_{8} = \frac{1}{\sqrt{6}} (u \bar{u} + d \bar{d} - 2 s \bar{s}) , and there is the SU(3) singlet (invariant) state \eta_{1} = \frac{1}{\sqrt{3}} \sum_{i = u,d,s} q^{i} \ \bar{q}_{i} = \frac{1}{\sqrt{3}} (u \bar{u} + d \bar{d} + s \bar{s}) \ . The exact quark content follows from the SU(3) decomposition 3 \otimes \bar{3} = 8 \oplus 1, which you can represent as follow q^{i} \bar{q}_{j} = \left( q^{i} \bar{q}_{j} - \frac{1}{3} \delta^{i}_{j} \sum_{k = u,d,s} q^{k} \bar{q}_{k}\right) + \frac{1}{3} \delta^{i}_{j} \sum_{k} q^{k}\bar{q}_{k} \ . The first term on the right hand side is the 3 \times 3 traceless hermitian mesons matrix \{8\}^{i}_{j} = q^{i} \bar{q}_{j} - \frac{1}{3} \delta^{i}_{j} \sum_{k = u,d,s} q^{k} \bar{q}_{k} \ . For the 0^{-} (i.e., scalar) mesons, the off-diagonal matrix elements are easily recognised, for example \{8\}^{2}_{3} = d \bar{s} = K^{0} \ , \{8\}^{3}_{1} = s \bar{u} = K^{-} and the two charged pions \{8\}^{1}_{2} = u \bar{d} = \pi^{+} \ , \{8\}^{2}_{1} = d \bar{u} = \pi^{-}. Now, before considering the diagonal elements of the SU(3) meson matrix \{8\}^{i}_{j}, and in order to settle the sign issue for \pi^{0}, let us repeat the same thing for the iso-spin group SU(2). That is decomposing the tensor product 2 \otimes 2 = 3 \oplus 1 by subtracting the SU(2)-invariant trace. So, in terms of quarks q^{m} \bar{q}_{n} = \left( q^{m} \bar{q}_{n} - \frac{1}{2} \delta^{m}_{n} \sum_{l = u,d} q^{l}\bar{q}_{l} \right) + \frac{1}{2} \delta^{m}_{n} \sum_{l = u,d} q^{l} \bar{q}_{l} \ . From this we identify the triplet (i.e., iso-spin one) pion states which are contained in the matrix \{3\}^{m}_{n}:\pi^{+} = |1 , +1\rangle = \{3\}^{1}_{2} = u \bar{d} \ ,\pi^{0} = |1 , 0 \rangle = \sqrt{2} \{3\}^{1}_{1} = \frac{1}{\sqrt{2}} (u \bar{u} - d \bar{d}) \ ,\pi^{-} = |1 , -1 \rangle = \{3\}^{2}_{1} = d \bar{u} \ . Now, you know the exact form of \pi^{0} state, go back to consider the diagonal elements of the SU(3) matrix \{8\}^{i}_{j}: \{8\}^{1}_{1} = u \bar{u} - \frac{1}{3} \sum_{j = u,d,s} q^{j}\bar{q}_{j} = \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{6} \left( u \bar{u} + d \bar{d} - 2 s \bar{s} \right) \ , \{8\}^{2}_{2} = - \frac{1}{\sqrt{2}} \pi^{0} + \frac{1}{6} \left( u \bar{u} + d \bar{d} - 2 s \bar{s} \right) \ ,\{8\}^{3}_{3} = - \frac{2}{6} \left( u \bar{u} + d \bar{d} - 2 s \bar{s}\right) \ . This led to the identification of \eta_{8} with the state \eta_{8} = \frac{1}{\sqrt{6}} \left( u \bar{u} + d \bar{d} - 2 s \bar{s}\right) \ .
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
948
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K