MHB Methods of elementary Number Theory

Click For Summary
The discussion focuses on solving the Diophantine equation x² + y² = z² using elementary number theory methods. It emphasizes that solving such equations involves expressing solutions in a simpler, parameterized form that allows for easy enumeration. The conversation confirms that proving the provided parameterization qualifies as a solution, though it is not the only possible parameterization. The importance of classifying and enumerating solutions is highlighted as a key aspect of solving Diophantine equations. Overall, the thread reinforces the concept that multiple parameterizations can exist for the same equation.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

I am given the following exercise:Try to solve the diophantine equation $x^2+y^2=z^2$ , using methods of elementary Number Theory.

So, do I have to write the proof of the theorem:

The non-trivial solutions of $x^2+y^2=z^2$ are given by the formulas:

$$x=\pm d(u^2-v^2), y=\pm 2duv, z=\pm d(u^2+v^2)$$

or

$$x=\pm d2uv, y=\pm d(u^2-v^2), z=\pm d(u^2+v^2)$$

? (Thinking)
 
Mathematics news on Phys.org
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.
 
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.
 
Bacterius said:
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.

mathbalarka said:
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.

Nice, thanks a lot! (Smile)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
727
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K