Methods of elementary Number Theory

Click For Summary

Discussion Overview

The discussion revolves around solving the diophantine equation $x^2+y^2=z^2$ using methods from elementary number theory. Participants explore the nature of solutions, parameterization, and the concept of "solving" in the context of diophantine equations.

Discussion Character

  • Exploratory, Technical explanation, Debate/contested

Main Points Raised

  • One participant inquires about the necessity of proving specific parameterization formulas for the solutions of the equation.
  • Another participant asserts that solving an equation involves expressing its solutions in a simpler form that allows for classification and enumeration.
  • A further contribution clarifies that "solving" a diophantine equation can involve producing a parameterization of the solution set, which may not be unique.
  • There is an emphasis on the idea that multiple parameterizations can exist for the same equation, indicating a variety of approaches to the problem.

Areas of Agreement / Disagreement

Participants generally agree on the definition of "solving" a diophantine equation as involving parameterization and enumeration of solutions. However, there is no consensus on the uniqueness of parameterizations, as multiple approaches are acknowledged.

Contextual Notes

Some assumptions about the nature of solutions and the definitions involved in parameterization are not explicitly stated, which may affect the understanding of the discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

I am given the following exercise:Try to solve the diophantine equation $x^2+y^2=z^2$ , using methods of elementary Number Theory.

So, do I have to write the proof of the theorem:

The non-trivial solutions of $x^2+y^2=z^2$ are given by the formulas:

$$x=\pm d(u^2-v^2), y=\pm 2duv, z=\pm d(u^2+v^2)$$

or

$$x=\pm d2uv, y=\pm d(u^2-v^2), z=\pm d(u^2+v^2)$$

? (Thinking)
 
Mathematics news on Phys.org
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.
 
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.
 
Bacterius said:
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.

mathbalarka said:
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.

Nice, thanks a lot! (Smile)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 0 ·
Replies
0
Views
627
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K