MHB Methods of elementary Number Theory

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hi! (Cool)

I am given the following exercise:Try to solve the diophantine equation $x^2+y^2=z^2$ , using methods of elementary Number Theory.

So, do I have to write the proof of the theorem:

The non-trivial solutions of $x^2+y^2=z^2$ are given by the formulas:

$$x=\pm d(u^2-v^2), y=\pm 2duv, z=\pm d(u^2+v^2)$$

or

$$x=\pm d2uv, y=\pm d(u^2-v^2), z=\pm d(u^2+v^2)$$

? (Thinking)
 
Mathematics news on Phys.org
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.
 
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.
 
Bacterius said:
Yes. That's what solving an equation means, express its solutions in a simpler form, preferably one where all the solutions can be classified and easily enumerated.

mathbalarka said:
Given a diophantine equation $P(X_1, X_2, \cdots, X_n) = 0$ over $\Bbb Q$, "solving" it means "enumerate the solutions". Now if the zero locus (the solution set) is (countably) infinite then enumeration is essentially done by parameterization, i.e., producing a set $\{(T_1, T_2, \cdots, T_k) \in \Bbb Z^k : X_i = F_i(T_1, T_2, \cdots, T_k) \, \forall i < n\}$ for some function $F_i$ which maps integers to integers when restricted to $\Bbb Z$.

So yes, proving the parameterization you mentioned would also qualify as "solving". But it is absolutely not nessesary that this is a unique parameterization -- there are a lot of ways to completely parameterize $X^2 + Y^2 + Z^2 = 0$.

Nice, thanks a lot! (Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top