I Metric Tensor on ##S^1## x ##S^2##

Onyx
Messages
141
Reaction score
4
TL;DR
How do I find the metric tensor on ##S^1## x ##S^2##?
How do I find the metric tensor on ##S^1## x ##S^2##?
 
Physics news on Phys.org
There is no such thing as the metric tensor. On a given manifold there are infinitely many metrics. For example if you take the standard metrics on the circle and on the sphere you can take the product metric on your manifold.
 
How do I take the product metric of the circle and sphere metrics?
 
Onyx said:
How do I take the product metric of the circle and sphere metrics?
What is the metric in the plane ##\mathbb R^2##?
 
##dx^2+dy^2## or ##dr^2+r^2d\theta^2##.
 
Onyx said:
##dx^2+dy^2## or ##dr^2+r^2d\theta^2##.
Well, the plane ##\mathbb R^2## is the product ##\mathbb R \times \mathbb R## and the ##dx^2## and ##dy^2## are the metrics on each factor.
 
martinbn said:
Well, the plane ##\mathbb R^2## is the product ##\mathbb R \times \mathbb R## and the ##dx^2## and ##dy^2## are the metrics on each factor.
Well then I suppose for ##S^1 x S^2## it would be ##d\theta^2+d\psi^2+sin^2\theta d\phi^2##.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
20
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
688
  • · Replies 61 ·
3
Replies
61
Views
6K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 11 ·
Replies
11
Views
883