MHB Michael h's question at Yahoo Answers (Sum of a series)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Series
Click For Summary
The discussion centers on finding the sum of the series represented by the expression (2n+1)/(n^2(n+1)^2). The transformation of the expression reveals that it can be rewritten as a difference of two convergent series: 1/n^2 and 1/(n+1)^2. By applying the properties of these series, the sum converges to 1. The calculations demonstrate that the series converges effectively, leading to a clear conclusion. The final result of the sum is 1.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

(2n+1)/(n^2(n+1)^2)

Here is a link to the question:

Find the sum of the series? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello michael h,

We have $(n+1)^2-n^2=2n+1$, so $$\dfrac{2n+1}{n^2(n+1)^2}=\dfrac{1}{n^2}-\dfrac{1}{(n+1)^2}$$ Using that $\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2},\;\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{(n+1)^2}$ are both convergent: $$\displaystyle\sum_{n=1}^{\infty}\dfrac{2n+1}{n^2(n+1)^2}=\displaystyle\sum_{n=1}^{\infty}\left( \dfrac{1}{n^2}-\dfrac{1}{(n+1)^2}\right)=\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2}-\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{(n+1)^2}=\\\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2}-\left(\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2}-\dfrac{1}{1^2}\right)=\left(\displaystyle\sum_{n=1}^{\infty}\dfrac{1}{n^2}-\sum_{n=1}^{\infty}\dfrac{1}{n^2}\right)+1=0+1=1$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
8K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K