Min Value of $a^2+b^2$ in Quadratic Equation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary
SUMMARY

The minimum value of $a^2+b^2$ for the quadratic equation $x^4+ax^3+bx^2+ax+1=0$ with at least one real root occurs when specific conditions on the coefficients $a$ and $b$ are satisfied. The analysis reveals that the discriminant must be non-negative for real roots to exist, leading to a relationship between $a$ and $b$. The optimal solution is achieved when $a$ and $b$ are minimized under these constraints, resulting in a definitive minimum value of $a^2+b^2$.

PREREQUISITES
  • Understanding of polynomial equations and their roots
  • Familiarity with the concept of discriminants in quadratic equations
  • Knowledge of optimization techniques in calculus
  • Basic algebraic manipulation skills
NEXT STEPS
  • Explore the properties of polynomial discriminants in depth
  • Study optimization methods for multivariable functions
  • Investigate the implications of real roots in higher-degree polynomials
  • Learn about the geometric interpretation of $a^2+b^2$ in the context of quadratic forms
USEFUL FOR

Mathematicians, students studying algebraic equations, and anyone interested in optimization problems in real analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $a^2+b^2$ when $(a,\,b)$ traverses all the pairs of real numbers for which the equation $x^4+ax^3+bx^2+ax+1=0$ has at least one real root.
 
Mathematics news on Phys.org
Here's my attempt at a solution.

Since \( x^{4} +ax^{3}+bx^{2}+ax+1 = 0 \), then we can assume that \( x \neq 0 \).

Dividing by \( x^{2} \) yields:
\( x^{2} + ax + \frac{a}{x} + b + \frac{1}{x^{2}} = 0 \) Rearrange terms

\( x^{2} + \frac{1}{x^{2}} + ax + \frac{a}{x} + b = 0 \) Add \( 2 \) and Subtract \( 2 \)

\( \left ( x^{2} + 2 + \frac{1}{x^{2}} \right ) + \left ( ax + \frac{a}{x} \right ) + b - 2 = 0 \) Factor each set of parentheses

\( \left ( x + \frac{1}{x} \right )^{2} + a \left ( x + \frac{1}{x} \right ) + b - 2 = 0 \)

Let \( v = x + \frac{1}{x} \), then we have \( v^{2} + av + b - 2 = 0 \).

Use the quadratic formula in attempt to solve for \( v \):
\( v = \frac{ (-a) \pm \sqrt{(-a)^{2}-4(1)(b - 2)} }{2(1)} \) Simplify

\( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \)

Recall that \( v=x + \frac{1}{x} \), then multiplying by \( x \) yields:
\( vx = x^{2} + 1 \) Subtract \( vx \) from both sides

\( x^{2} - vx + 1 = 0 \)

In order for this to have "at least one real root", then the discriminant \( \Delta \geq 0 \):
\( (-v)^{2} - 4(1)(1) \geq 0 \) Simplify

\( v^{2} - 4 \geq 0 \) Add \( 4 \) to both sides

\( v^{2} \geq 4 \)

Since \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) and \( v^{2} \geq 4 \), then:
\( \left ( \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \right )^{2} \geq 4 \) Simplify

\( \frac{ \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} }{4} \geq 4 \) Multiply by \( 4 \)

\( \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} \geq 16 \) Expand the left side

\( a^{2} \pm 2a \sqrt{a^{2}-4b + 8} + a^{2}-4b + 8 \geq 16 \) Combine like terms

\( 2a^{2} \pm 2a \sqrt{a^{2}-4b + 8} - 4b + 8 \geq 16 \) Divide both sides by \( 2 \)

\( a^{2} \pm a \sqrt{a^{2}-4b + 8} - 2b + 4 \geq 8 \) Isolate the square root term

\( \pm a \sqrt{a^{2}-4b + 8} \geq 8 - a^{2} + 2b - 4 \) Combine like terms

\( \pm a \sqrt{a^{2}-4b + 8} \geq 4 - a^{2} + 2b \) Square both sides

\( a^{2} \left ( a^{2}-4b + 8 \right ) \geq \left ( 4 - a^{2} + 2b \right )^{2} \) Expand both sides

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 4a^{2} + 8b - 4a^{2} + a^{4} - 2a^{2}b + 8b - 2a^{2}b
+4b^{2} \) Combine like terms

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 8a^{2} + 16b + a^{4} - 4a^{2}b + 4b^{2} \) Simplify/Cancel out terms

\( 8a^{2} \geq 16 - 8a^{2} + 16b + 4b^{2} \) add \( 8a^{2} \) to both sides

\( 16a^{2} \geq 16 + 16b + 4b^{2} \) Divide by \( 4 \) on both sides

\( 4a^{2} \geq 4 + 4b + b^{2} \) Add \( 4b^{2} \) to both sides and rewrite

\( 4a^{2} + 4b^{2} \geq 5b^{2} + 4b + 4 \) Factor out a \( 5 \) on the right and complete the square

\( 4a^{2} + 4b^{2} \geq 5 \left ( b^{2} + \frac{4}{5}b + \frac{4}{25} \right ) - \frac{4}{5} + 4 \) Factor and simplify

\( 4a^{2} + 4b^{2} \geq 5 \left ( b + \frac{2}{5} \right )^{2} + \frac{16}{5} \) Divide both sides by \( 4 \)

\( a^{2} + b^{2} \geq \frac{5}{4} \left ( b + \frac{2}{5} \right )^{2} + \frac{4}{5} \)

This implies that \( a^{2} + b^{2} \) has a minimum at the vertex of the parabola on the right side when \( b = - \frac{2}{5} \), so:

\( \therefore a^{2} + b^{2} = \frac{4}{5} \)
 

Similar threads

Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K