MHB Min Value of $a^2+b^2$ in Quadratic Equation

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Minimum
Click For Summary
The minimum value of $a^2 + b^2$ is explored in the context of the polynomial equation $x^4 + ax^3 + bx^2 + ax + 1 = 0$ having at least one real root. The discussion focuses on deriving conditions under which the equation maintains real roots, particularly analyzing the discriminant and critical points. Participants suggest using calculus and algebraic manipulation to find the minimum values of $a$ and $b$. The conversation emphasizes the relationship between the coefficients and the nature of the roots. Ultimately, the goal is to establish the minimum value of the expression $a^2 + b^2$ based on these conditions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the minimum value of $a^2+b^2$ when $(a,\,b)$ traverses all the pairs of real numbers for which the equation $x^4+ax^3+bx^2+ax+1=0$ has at least one real root.
 
Mathematics news on Phys.org
Here's my attempt at a solution.

Since \( x^{4} +ax^{3}+bx^{2}+ax+1 = 0 \), then we can assume that \( x \neq 0 \).

Dividing by \( x^{2} \) yields:
\( x^{2} + ax + \frac{a}{x} + b + \frac{1}{x^{2}} = 0 \) Rearrange terms

\( x^{2} + \frac{1}{x^{2}} + ax + \frac{a}{x} + b = 0 \) Add \( 2 \) and Subtract \( 2 \)

\( \left ( x^{2} + 2 + \frac{1}{x^{2}} \right ) + \left ( ax + \frac{a}{x} \right ) + b - 2 = 0 \) Factor each set of parentheses

\( \left ( x + \frac{1}{x} \right )^{2} + a \left ( x + \frac{1}{x} \right ) + b - 2 = 0 \)

Let \( v = x + \frac{1}{x} \), then we have \( v^{2} + av + b - 2 = 0 \).

Use the quadratic formula in attempt to solve for \( v \):
\( v = \frac{ (-a) \pm \sqrt{(-a)^{2}-4(1)(b - 2)} }{2(1)} \) Simplify

\( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \)

Recall that \( v=x + \frac{1}{x} \), then multiplying by \( x \) yields:
\( vx = x^{2} + 1 \) Subtract \( vx \) from both sides

\( x^{2} - vx + 1 = 0 \)

In order for this to have "at least one real root", then the discriminant \( \Delta \geq 0 \):
\( (-v)^{2} - 4(1)(1) \geq 0 \) Simplify

\( v^{2} - 4 \geq 0 \) Add \( 4 \) to both sides

\( v^{2} \geq 4 \)

Since \( v = \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \) and \( v^{2} \geq 4 \), then:
\( \left ( \frac{ -a \pm \sqrt{a^{2}-4b + 8} }{2} \right )^{2} \geq 4 \) Simplify

\( \frac{ \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} }{4} \geq 4 \) Multiply by \( 4 \)

\( \left ( -a \pm \sqrt{a^{2}-4b + 8} \right )^{2} \geq 16 \) Expand the left side

\( a^{2} \pm 2a \sqrt{a^{2}-4b + 8} + a^{2}-4b + 8 \geq 16 \) Combine like terms

\( 2a^{2} \pm 2a \sqrt{a^{2}-4b + 8} - 4b + 8 \geq 16 \) Divide both sides by \( 2 \)

\( a^{2} \pm a \sqrt{a^{2}-4b + 8} - 2b + 4 \geq 8 \) Isolate the square root term

\( \pm a \sqrt{a^{2}-4b + 8} \geq 8 - a^{2} + 2b - 4 \) Combine like terms

\( \pm a \sqrt{a^{2}-4b + 8} \geq 4 - a^{2} + 2b \) Square both sides

\( a^{2} \left ( a^{2}-4b + 8 \right ) \geq \left ( 4 - a^{2} + 2b \right )^{2} \) Expand both sides

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 4a^{2} + 8b - 4a^{2} + a^{4} - 2a^{2}b + 8b - 2a^{2}b
+4b^{2} \) Combine like terms

\( a^{4} - 4a^{2}b + 8a^{2} \geq 16 - 8a^{2} + 16b + a^{4} - 4a^{2}b + 4b^{2} \) Simplify/Cancel out terms

\( 8a^{2} \geq 16 - 8a^{2} + 16b + 4b^{2} \) add \( 8a^{2} \) to both sides

\( 16a^{2} \geq 16 + 16b + 4b^{2} \) Divide by \( 4 \) on both sides

\( 4a^{2} \geq 4 + 4b + b^{2} \) Add \( 4b^{2} \) to both sides and rewrite

\( 4a^{2} + 4b^{2} \geq 5b^{2} + 4b + 4 \) Factor out a \( 5 \) on the right and complete the square

\( 4a^{2} + 4b^{2} \geq 5 \left ( b^{2} + \frac{4}{5}b + \frac{4}{25} \right ) - \frac{4}{5} + 4 \) Factor and simplify

\( 4a^{2} + 4b^{2} \geq 5 \left ( b + \frac{2}{5} \right )^{2} + \frac{16}{5} \) Divide both sides by \( 4 \)

\( a^{2} + b^{2} \geq \frac{5}{4} \left ( b + \frac{2}{5} \right )^{2} + \frac{4}{5} \)

This implies that \( a^{2} + b^{2} \) has a minimum at the vertex of the parabola on the right side when \( b = - \frac{2}{5} \), so:

\( \therefore a^{2} + b^{2} = \frac{4}{5} \)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
6
Views
2K
Replies
6
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
19
Views
3K
Replies
4
Views
1K