MHB Min Value of $\dfrac{x}{y}-\dfrac{123}{2014}$: $\dfrac{1}{3792362}$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Value
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $x,\,y$ are positive integers with $y<2014$, show that the minimal value of $\left|\dfrac{x}{y}-\dfrac{123}{2014}\right|$ is $\dfrac{1}{3792362}$.
 
Mathematics news on Phys.org
anemone said:
If $x,\,y$ are positive integers with $y<2014$, show that the minimal value of $\left|\dfrac{x}{y}-\dfrac{123}{2014}\right|$ is $\dfrac{1}{3792362}$.
[sp]First, factorise those numbers to find that $123 = 3\times41$, $2014 = 2\times19\times53$ and $3792362 = 1883\times2014$.

So the problem is to show that $\left|\dfrac{x}{y}-\dfrac{123}{2014}\right| \geqslant \dfrac{1}{1883\times 2014}$ whenever $y<2014$, and that equality can be achieved.

Let's look first at whether equality can be achieved, so that $\left|\dfrac{x}{y}-\dfrac{123}{2014}\right| =\dfrac{1}{1883\times 2014}$. That is equivalent to $\bigl|\,2014x - 123y\,\bigr| = \dfrac y{1883}.$

Since $123$ and $2014$ are co-prime, the left side of that equation can never be zero when $y<2014$. But it is an integer, so the smallest value it can take is $1$. A routine application of Euclid's algorithm shows that for $y<2014$ this can only happen if either (i) $x=8$ and $y=131$ or (ii) $x = 115$ and $y = 1883$. In case (i), $\bigl|\,2014x - 123y\,\bigr|$ is much larger than $\dfrac y{1883}.$ But in case (ii), equality occurs.

For any other values of $x$ and $y$ (with $y<2014$), we must have $\bigl|\,2014x - 123y\,\bigr| \geqslant2$, and $\dfrac y{1883} <2$. Therefore $\bigl|2014x - 123y\bigr| > \dfrac y{1883}$ and consequently $\left|\dfrac{x}{y}-\dfrac{123}{2014}\right| > \dfrac{1}{3792362}$.

Therefore $\dfrac{1}{3792362}$ is the minimal value, and it only occurs when $x = 115$ and $y = 1883$.[/sp]
 
Very well done, Opalg!(Happy) And thanks for participating!(Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top