Minimal Polynomial Finding Algorithm

Click For Summary

Discussion Overview

The discussion revolves around methods for finding the minimal polynomial of a matrix, particularly in cases where the matrix is not diagonalizable. Participants explore various approaches, including connections to the Jordan normal form and trial-and-error methods, while examining specific examples and theoretical implications.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants note that the minimal polynomial is straightforward to find for diagonalizable matrices, consisting of distinct linear factors of the characteristic polynomial.
  • Others inquire about methods for determining the minimal polynomial in the general case, suggesting a need for information similar to that required for the Jordan normal form.
  • A participant mentions an alternative method from a wiki article for finding the minimal polynomial, which also aids in constructing the Jordan normal form.
  • One participant expresses confusion regarding the application of the wiki method to a specific matrix example, questioning their understanding of the process and the resulting minimal polynomial.
  • Another participant discusses the importance of finding the dimension of the kernel for each eigenvalue to determine the number of Jordan blocks, relating this to the process of finding the minimal polynomial.
  • It is suggested that for smaller matrices, the minimal polynomial can be found through trial-and-error by determining the powers of linear factors that annihilate the matrix.
  • One participant provides examples of how to approach finding the minimal polynomial based on the number of eigenvalues and their multiplicities, discussing potential candidates based on the characteristic polynomial.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method for finding the minimal polynomial, with multiple competing views and approaches presented throughout the discussion.

Contextual Notes

Some participants highlight the dependence on the size of the matrix and the nature of the field in which the matrix entries lie, indicating that these factors may influence the methods used to find the minimal polynomial.

Who May Find This Useful

Readers interested in linear algebra, particularly those studying matrix theory, eigenvalues, and polynomial methods in mathematics may find this discussion relevant.

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

This is one of the thoughts that I got after thinking about finding the minimal polynomial of a matrix. I know that the minimal polynomial is easy to find when a matrix is diagonalizable. Then the minimal polynomial only consist all the distinct linear factors of the characteristic polynomial.

But the problem is how do we find the minimal polynomial of a matrix in the general case? Is there a specific method to do so?
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

This is one of the thoughts that I got after thinking about finding the minimal polynomial of a matrix. I know that the minimal polynomial is easy to find when a matrix is diagonalizable. Then the minimal polynomial only consist all the distinct linear factors of the characteristic polynomial.

But the problem is how do we find the minimal polynomial of a matrix in the general case? Is there a specific method to do so?

To find the minimal polynomial you basically need the same information as you need for the Jordan normal form...
 
For the record, the wiki article gives an alternative way to find the minimal polynomial.
Note that this also gives you the information you need to construct the Jordan normal form.
 
I like Serena said:
For the record, the wiki article gives an alternative way to find the minimal polynomial.
Note that this also gives you the information you need to construct the Jordan normal form.

Great. Thanks for the information. But I didn't quite understand the method that the wiki article speaks about. Let us take the matrix,

\[T=\begin{pmatrix}-1&-5&0\\0&1&1\\0&0&1\end{pmatrix}\]

The eigenvalues are \(1,\,1\mbox{ and }-1\). Now the characteristic polynomial is, \((x+1)(x-1)^2\). So if we follow the procedure of the wiki article we have,

\[e_1=\begin{pmatrix}1\\0\\0\end{pmatrix}\]

\[T.e_1=\begin{pmatrix}-1\\0\\0\end{pmatrix}\]

I feel that I am doing something wrong here, 'cause then I would get the minimal polynomial as, \(x+1\) which is obviously not the case. Can you tell me what I am doing wrong.

I like Serena said:
To find the minimal polynomial you basically need the same information as you need for the Jordan normal form...

Okay, so in the case of the Jordan normal form we have to find the dimension of the kernel for each eigenvalue so that we can get the number of Jordan blocks. Can you please elaborate a little bit about how this is the same in the case of finding the minimal polynomial? :)
 
Sudharaka said:
Great. Thanks for the information. But I didn't quite understand the method that the wiki article speaks about. Let us take the matrix,

\[T=\begin{pmatrix}-1&-5&0\\0&1&1\\0&0&1\end{pmatrix}\]

The eigenvalues are \(1,\,1\mbox{ and }-1\). Now the characteristic polynomial is, \((x+1)(x-1)^2\). So if we follow the procedure of the wiki article we have,

\[e_1=\begin{pmatrix}1\\0\\0\end{pmatrix}\]

\[T.e_1=\begin{pmatrix}-1\\0\\0\end{pmatrix}\]

I feel that I am doing something wrong here, 'cause then I would get the minimal polynomial as, \(x+1\) which is obviously not the case. Can you tell me what I am doing wrong.

Checking each of the unit vectors we find the minimal relations:

\begin{array}{lclclcl}
Te_1 &=& -e_1 &\Rightarrow &(T+I)e_1 &=& 0 \\
T^2e_2 &=& e_2 &\Rightarrow &(T-I)^2e_1 &=& 0 \\
T^3e_1 &=& T^2e_3 + Te_3 - e_3 &\Rightarrow &(T^3-T^2-T+I)e_3 &=& 0
\end{array}

Each of those polynomials are minimal for their respective vectors.
Therefore each of them must divide the minimal polynomial.
Their least common multiple is the minimal polynomial.

It becomes a bit easier since for $e_3$ we find a 3rd order polynomial which therefore has to be the minimal polynomial.
Okay, so in the case of the Jordan normal form we have to find the dimension of the kernel for each eigenvalue so that we can get the number of Jordan blocks. Can you please elaborate a little bit about how this is the same in the case of finding the minimal polynomial?

We are looking for powers of $(T-\lambda I)$ such that it just annihilates and becomes the null matrix.
Suppose you have a 3x3 (sub) matrix in the form of a Jordan block. Which power do you need before it becomes the null matrix?
Generally, the size of the largest Jordan block for an eigenvalue is the power you need for that eigenvalue.
 
If the size (the "n" of an nxn matrix) is small enough, the minimal polynomial can be found by trial-and-error.

If the eigenvalues of $T$ are $\lambda_1,\dots,\lambda_r$, then:

$\mu_T(x) = (x - \lambda_1)^{k_1}\dots(x - \lambda_r)^{k_r}$

so one just has to determine the integers $k_j$.

For example, if n = 4, we have the following possibilities:

1) 4 eigenvalues
2) 3 eigenvalues
3) 2 eigenvalues
4) 1 eigenvalue

Case (1) is easy, and case (4) isn't much harder (only four 4 powers of a linear factor to try).

Case (2) also isn't that bad, either the minimal polynomial is:

$(x - a)^2(x - b)(x - c)$

or

$(x - a)(x - b)(x - c)$

So if the latter polynomial doesn't annihilate $T$ there are just 3 other candidates to try. If the field $F$ that $T$ has entries in isn't algebraically closed, sometimes the field that the eigenvalues lie in can give us some clues: for example, suppose we have a 4x4 rational matrix with 2 complex eigenvalues. Either the minimal polynomial has degree 4 (and is the characteristic polynomial), or it is a real quadratic.

Another example:

Suppose you have a 4x4 matrix $T$ with characteristic polynomial $x^4 - 1$, and 2 eigenvalues 1,-1. The only possible minimal polynomials are:

$x^2 - 1$
$x^4 - 1$

because the cubics:

$(x^2 - 1)(x + 1)$
$(x^2 - 1)(x - 1)$

do not divide the characteristic polynomial.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 27 ·
Replies
27
Views
6K