Undergrad Minimize grand potential functional for density matrix

Click For Summary
Minimizing the functional Ω[ρ] leads to the well-known expression Ω[ρ₀] = - (1/β) log Tr e^(-β(Ĥ - μN)). The proof involves defining the operator ρ_λ = e^(Ĥ - μN + λΔ) / Tr e^(Ĥ - μN + λΔ), where Δ = -Ĥ + μN - (1/β) log ρ. By evaluating the relationship between Ω[ρ] and Ω[ρ₀], it is shown that this difference is always greater than zero, except when λ = 0, confirming that ρ₀ minimizes the functional. The original paper by Mermin provides the foundational proof, initially established by von Neumann. This discussion clarifies the process of minimizing a functional involving density matrices in quantum mechanics.
dRic2
Gold Member
Messages
887
Reaction score
225
TL;DR
##\rho## is the density matrix
##\Omega## is the grand potential
##\text{Tr}## stands for 'trace'
I'd like to show that, by minimizing this functional
$$\Omega[\hat \rho] = \text{Tr} \hat \rho \left[ \hat H - \mu \hat N + \frac 1 {\beta} \log \hat \rho \right]$$
I get the well known expression
$$\Omega[\hat \rho_0] = - \frac 1 {\beta} \log \text{Tr} e^{-\beta (\hat H - \mu \hat N )}$$

I'm familiar with minimizing a functional of the form ##F[g] = \int dx f(g(x))##, but this notations for operators eludes me.

Thanks,
Ric
 
Physics news on Phys.org
I've found the original paper (PhysRev.137.A1441) where Mermin introduced this functional. You can check the proof in the Appendix (If I'm not mistaken it was first proved by von Neumann).

To sum up the idea behind the proof is to define the operator ##\rho_{\lambda} = \frac {e^{H-\mu N + \lambda \Delta}} {\text{Tr}e^{H-\mu N + \lambda \Delta}}## with ##\Delta = -H + \mu N - \frac 1 {\beta} \log \rho##. You can see that because of ##\text{Tr} \rho =1## for ##\lambda = 1## I get ##\rho_1 = \rho## and for ##\lambda = 0## you get ##\rho = \rho_0## (the equilibrium value). You can then proceed to study the following relation ##\Omega[\rho] - \Omega[\rho_0] = \Omega[\rho_{\lambda = 1}] - \Omega[\rho_{\lambda = 0}] = \int_0^1 \frac {\partial \Omega[\rho_{\lambda}]} {\partial \lambda} d \lambda## and check that is always greater than zero and zero only if ##\lambda = 0## thus proving that ##\rho_0## minimizes the functional
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K