MHB Minimum of the Sum of Logarithms

Click For Summary
The problem involves minimizing the sum of logarithms of the form $\log_{a_1}(a_2 - \frac{1}{4}) + \log_{a_2}(a_3 - \frac{1}{4}) + \cdots + \log_{a_n}(a_1 - \frac{1}{4})$, where each $a_i$ is between $\frac{1}{4}$ and $1$. It is suggested that the minimum occurs when all variables are equal, leading to the function $f(x) = \log_x(x - \frac{1}{4})$. The derivative of this function is calculated, and it is shown to vanish at $x = \frac{1}{2}$. Thus, the minimum of the original expression is achieved when $a_1 = a_2 = \cdots = a_n = \frac{1}{2}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$.
 
Mathematics news on Phys.org
anemone said:
Find the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$.

[sp]Attempt ... because changing the order of the variables the problem remains the same, the solution will be such that $ a_ {1} = a_ {2} = ... = a_ {n} = x $ and the function to be minimized is...

$\displaystyle f(x) = log_{x} (x - \frac{1}{4})\ (1)$

Proceeding in standard fashion is...

$\displaystyle f^{\ '} (x) = \frac{\frac{\ln x}{x - \frac{1}{4}} - \frac{\ln (x - \frac{1}{4})}{x}}{\ln ^{2} x}\ (2)$

... and the (2) vanishes for...

$\displaystyle x\ \ln x = (x - \frac{1}{4})\ \ln (x - \frac{1}{4}) \implies x = \frac{1}{2}\ (3)$[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]Attempt ... because changing the order of the variables the problem remains the same, the solution will be such that $ a_ {1} = a_ {2} = ... = a_ {n} = x $ and the function to be minimized is...

$\displaystyle f(x) = log_{x} (x - \frac{1}{4})\ (1)$

Proceeding in standard fashion is...

$\displaystyle f^{\ '} (x) = \frac{\frac{\ln x}{x - \frac{1}{4}} - \frac{\ln (x - \frac{1}{4})}{x}}{\ln ^{2} x}\ (2)$

... and the (2) vanishes for...

$\displaystyle x\ \ln x = (x - \frac{1}{4})\ \ln (x - \frac{1}{4}) \implies x = \frac{1}{2}\ (3)$[/sp]

Kind regards

$\chi$ $\sigma$

Thanks chisigma for participating in this challenge!

And in your method,the minimum of $\large \log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)$ where $a_1,\,a_2,\cdots,a_n$ are real numbers in the interval $\left(\dfrac{1}{4},\,1\right)$ would be $2n$.

Here is the solution of other that I wanted to share:

Since $\log_m a$ is a decreasing function of $a$ when $0<m<1$, and since $\left(a-\dfrac{1}{2}\right)^2\ge 0$ which implies $a^2\ge a-\dfrac{1}{4}$, we have

$\large \log_{a_k}\left(a_{k+1}-\dfrac{1}{4}\right)\ge \log_{a_k} a_{k+1}^2=2\log_{a_k} a_{k+1}=2\dfrac{\log a_{k+1}}{\log a_{k}}$

It follows that

$\begin{align*}\log_{a_1}\left(a_2-\dfrac{1}{4}\right)+\log_{a_2}\left(a_3-\dfrac{1}{4}\right)+\cdots+\log_{a_n}\left(a_1-\dfrac{1}{4}\right)&\ge 2\left(\dfrac{\log a_2}{\log a_1}+\dfrac{\log a_3}{\log a_2}+\cdots+\dfrac{\log a_n}{\log a_{n-1}}+\dfrac{\log a_1}{\log a_n}\right)\\&\ge 2n\,\,\,\text{by AM-GM inequality}\end{align*}$

Equalities hold iff $a_1=a_2=\cdots=a_n=\dfrac{1}{2}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
6
Views
2K