Mirror symmetry in String Theory?

Click For Summary
Mirror symmetry in string theory reveals a duality between two Calabi-Yau (CY) spaces, where one space may correspond to left-handed weak interactions and the other to right-handed interactions, potentially linked to dark matter. This duality indicates that string theory on one CY manifold is equivalent to another on its mirror manifold, without combining their matter sectors. The behavior of string theory varies based on parameters like coupling and manifold shape, with singularities leading to new light states that are better described by the mirror theory. Understanding mirror symmetry requires knowledge of differential topology, particularly Hodge numbers, which exhibit a symmetry in their values across mirror pairs. This reflection in the Hodge number plane illustrates the fundamental relationship between the two manifolds.
johne1618
Messages
368
Reaction score
0
From looking at the Wikipedia entry on string theory I gather that it is found that any given physical model implies two Calabi-Yau spaces.

Perhaps one space gives rise to a sector of particles with left-handed weak interactions and the other gives rise to a sector with right-handed weak interactions.

The right-handed sector might be the dark matter.

http://en.wikipedia.org/wiki/String_theory#Mirror_symmetry
 
Last edited:
Physics news on Phys.org
Mirror symmetry in string theory is a type of duality, which is an equivalence between two theories. This type of duality means that the string theory on the CY manifold X is equivalent to another string theory on the mirror manifold Y. One does not add the matter computed from the theory on X to that computed from Y.

Instead, we note that the string theory on X has certain parameters, including the string coupling, as well as the size and shape parameters associated with X. For a certain range of parameters, the string theory on X is weakly-coupled and well-behaved. For other ranges, the string theory on X could be strongly coupled or otherwise poorly behaved. For instance when X develops a singularity, there are new light states appearing that are not easily described by the perturbative CFT description of X. For certain types of singularities, the description via the perturbative theory on Y is a better way to describe the physics.

Also the "mirror" term in mirror symmetry does not refer to spacetime parity. To understand it, one really needs to know some differential topology. But suffice to say, there is a certain type of topological data about manifolds, known as Hodge numbers. For a Calabi-Yau 3-manifold, the only Hodge numbers that can be different from 0 or 1 are ##h^{1,1}## and ##h^{1,2}## (while ##h^{2,1} = h^{1,2}##). When physicists plotted ##h^{1,1}## vs ##h^{1,2}## for the then known CY manifolds, they found a symmetry around the line ##h^{1,1}=h^{1,2}##. Namely, when there was a CY with Hodge numbers ##(h^{1,1},h^{1,2})=(a,b)##, there was a corresponding CY with numbers ##(h^{1,1},h^{1,2})=(b,a)##. These are the mirror pairs, and the mirror symmetry refers to the mirror reflection in the ##h^{1,1},h^{1,2}## plane when we plot the Hodge numbers of all CY 3-manifolds.
 
Thanks for the reply.
 
"Supernovae evidence for foundational change to cosmological models" https://arxiv.org/pdf/2412.15143 The paper claims: We compare the standard homogeneous cosmological model, i.e., spatially flat ΛCDM, and the timescape cosmology which invokes backreaction of inhomogeneities. Timescape, while statistically homogeneous and isotropic, departs from average Friedmann-Lemaître-Robertson-Walker evolution, and replaces dark energy by kinetic gravitational energy and its gradients, in explaining...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
4K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 2 ·
Replies
2
Views
4K