Modelling a spring system with damping force and external forces

AI Thread Summary
The discussion centers on modeling a spring system that includes damping and external forces, with one participant suggesting the system is critically damped based on a graph. They request examples of systems exhibiting damping without external forces and with external forces, expressing confusion over the term "external force" in a Newtonian context. Additionally, a question arises regarding the equation 10y'' + 9y" + 2y' = -2e^(-t/2) and why it differs from 19y'' + 2y' = -2e^(-t/2), along with a query about the distinction between y'' and y". The conversation highlights the complexities of damping in spring systems and the interpretation of forces in mathematical modeling. Understanding these concepts is essential for accurately analyzing dynamic systems.
sss1
Messages
50
Reaction score
2
Homework Statement
I know for a system with no external forces there are conditions for being underdamping, overdamping and critically damped. Is there also such conditions for systems having external forces acting on them also? Specifically, for the example 10y''+9y"+2y'=-2e^(-t/2) with conditions y(0)=0 and y'(0)=0, is the system critically damped?
Relevant Equations
10y''+9y"+2y'=-2e^(-t/2)
I think its critically damped by looking at the graph of the solution.
 
Physics news on Phys.org
Can you give an example of a system with no external forces that exhibits damping and a system with external forces that also exhibits damping? I do not understand your use of "external force" at least not in the Newtonian sense.

Also, if 10y''+9y"+2y'=-2e^(-t/2), why not 19y''+ 2y'=-2e^(-t/2)? Is there a real difference between y'' and y"?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top