MHB Mohammad nabeel's question at Yahoo Answers regarding a definite integral

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the original question:

Ntegral of sin^3(6x)cos^4(3x) dx ? between limits o to 60 degrees

Here is a link to the question:

Ntegral of sin^3(6x)cos^4(3x) dx ? - Yahoo! Answers

I have posted a link there to this topic so that the OP can find my response.
 
Mathematics news on Phys.org
Hello Mohammad,

We are given to calculate:

$\displaystyle \int_0^{\frac{\pi}{3}}\sin^3(6x)\cos^4(3x)\,dx$

If we use a change of variables, i.e.,

$\displaystyle u=x-\frac{\pi}{6}\,\therefore\,du=dx\,\therefore\,x=u+\frac{\pi}{6}$

then we may rewrite the integrand as follows:

$\displaystyle \sin(6x)=\sin\left(6\left(u+\frac{\pi}{6} \right) \right)=\sin(6u+\pi)=\sin(6u)\cos(\pi)+\cos(6u) \sin(\pi)=-\sin(6u)$

$\displaystyle \cos(3x)=\cos\left(3\left(u+\frac{\pi}{6} \right) \right)=\cos\left(3u+\frac{\pi}{2} \right)=\cos(3u)\cos\left(\frac{\pi}{2} \right)-\sin(3u)\sin\left(\frac{\pi}{2} \right)=-\sin(3u)$

and our integral becomes (don't forget to change the limits in accordance with the change of variable):

$\displaystyle -\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\sin^3(6u)\sin^4(3u)\,dx$

Now we have an odd-function as the integrand, and by the odd function rule, this is simply zero.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top