MHB Momentum operator in the position representation

AI Thread Summary
The discussion focuses on the calculation of the momentum operator $\widehat{\vec{P}}$ in the position representation as presented in Nouredine Zettili's Quantum Mechanics. A participant seeks clarification on the transition from the first to the second line of the calculation, specifically how the integral involving the momentum operator leads to the expression involving $\langle \vec{r} | \vec{p} \rangle$ and $\langle \vec{p} | \psi \rangle$. The conversation also addresses the confusion surrounding the notation where the momentum operator acts on the state $|\vec{p}\rangle$, leading to the interpretation of $\vec{p}$ as an eigenvalue. Participants emphasize the importance of understanding the terminology and notation used in quantum mechanics, especially for those self-studying the subject. The discussion concludes with a reassurance about the standard nature of the notation and its implications in the context of quantum mechanics.
Fantini
Gold Member
MHB
Messages
267
Reaction score
0
Hi! :) I'm trying to understand the following calculation. The book Quantum Mechanics by Nouredine Zettili wants to determine the form of the momentum operator $\widehat{\vec{P}}$ in the position representation. To do so he calculates as follows: $$\begin{aligned}
\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle & = \int \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \int \vec{p} \langle \vec{r} | \vec{p} \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \frac{1}{(2 \pi \hbar)^{3/2}} \int \vec{p} \exp \left( \frac{i \vec{p} \cdot \vec{r} }{\hbar} \right) \Psi(\vec{p}) \, d^3 p.
\end{aligned}$$ The momentum operator is defined as $\widehat{\vec{P}} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$.

I don't understand he's doing from the first to the second line, after applying the definition of $\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle$. I know that $$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2 \pi \hbar)^{3/2}} \exp \left( \frac{i \vec{p} \cdot \vec{r}}{\hbar} \right)$$ and $$\langle \vec{p} | \psi \rangle = \Psi(\vec{p}),$$ but I don't see how he gets to that. The book claims to use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, the identity operator, and $\langle \vec{r} | \vec{p} \rangle = \ldots$.

Here's what I thought: if we use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$ then $$\begin{aligned} \langle \vec{r} | \widehat{\vec{P}} | \vec{p} \rangle \langle \vec{p} | \psi \rangle & = \langle \vec{r} | \widehat{\vec{P}} \widehat{I} | \psi \rangle \\ & = \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \\ & = \langle \vec{r} | \vec{p} | \vec{p} \rangle | \psi \rangle \\ & = \vec{p} \langle \vec{r} | \vec{p} \rangle | \psi \rangle. \end{aligned}$$ That doesn't seem to be what's happening. If we don't use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, then I find an extra $| \vec{p} \rangle$ lying around.

Where am I going wrong?
 
Mathematics news on Phys.org
Fantini said:
Hi! :) I'm trying to understand the following calculation. The book Quantum Mechanics by Nouredine Zettili wants to determine the form of the momentum operator $\widehat{\vec{P}}$ in the position representation. To do so he calculates as follows: $$\begin{aligned}
\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle & = \int \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \int \vec{p} \langle \vec{r} | \vec{p} \rangle \langle \vec{p} | \psi \rangle \, d^3 p \\
& = \frac{1}{(2 \pi \hbar)^{3/2}} \int \vec{p} \exp \left( \frac{i \vec{p} \cdot \vec{r} }{\hbar} \right) \Psi(\vec{p}) \, d^3 p.
\end{aligned}$$ The momentum operator is defined as $\widehat{\vec{P}} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$.

I don't understand he's doing from the first to the second line, after applying the definition of $\langle \vec{r} | \widehat{\vec{P}} | \psi \rangle$. I know that $$\langle \vec{r} | \vec{p} \rangle = \frac{1}{(2 \pi \hbar)^{3/2}} \exp \left( \frac{i \vec{p} \cdot \vec{r}}{\hbar} \right)$$ and $$\langle \vec{p} | \psi \rangle = \Psi(\vec{p}),$$ but I don't see how he gets to that. The book claims to use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, the identity operator, and $\langle \vec{r} | \vec{p} \rangle = \ldots$.

Here's what I thought: if we use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$ then $$\begin{aligned} \langle \vec{r} | \widehat{\vec{P}} | \vec{p} \rangle \langle \vec{p} | \psi \rangle & = \langle \vec{r} | \widehat{\vec{P}} \widehat{I} | \psi \rangle \\ & = \langle \vec{r} | \widehat{\vec{P}} | \psi \rangle \\ & = \langle \vec{r} | \vec{p} | \vec{p} \rangle | \psi \rangle \\ & = \vec{p} \langle \vec{r} | \vec{p} \rangle | \psi \rangle. \end{aligned}$$ That doesn't seem to be what's happening. If we don't use that $ | \vec{p} \rangle \langle \vec{p} | = \widehat{I}$, then I find an extra $| \vec{p} \rangle$ lying around.

Where am I going wrong?
Sorry it's taken me so long to respond. A visit to my parents, two week long flus, and a 3 day anxiety attack pretty much fills up a month.

Anyway, where did you get that first line from? Maybe it's right but to me it doesn't even look wrong. Also [math]I = \int | \vec{p} > < \vec{p} |~d^3 \vec{p}[/math]

Let's take it step by step.
[math]< \vec{r} | \vec{P} | \psi > ~ = ~ < \vec{r} | \vec{P} I | \psi >[/math]

[math]= < \vec{r} | \vec{P} \int | \vec{p} > < \vec{p} | d^3 \vec{p} ~ | \psi >[/math]

[math]= \int < \vec{r} | \vec{P} | \vec{p} > < \vec{p} | \psi > ~d^3 \vec{p}[/math]

[math]= \int \vec{p} < \vec{r} | \vec{p} > < \vec{p} | \psi > ~d^3 \vec{p}[/math]

[math]= \frac{1}{(2 \pi \hbar)^{3/2}} \int \vec{p} \psi( \vec{p} ) e^{i p \cdot r/ \hbar} ~d^3 \vec{p}[/math]

-Dan
 
Thank you for answering, topsquark!

I think I understand everything. You write $\vec{P} = \vec{P}\cdot \widehat{I}$ and uses that $$\widehat{I} = \int |\vec{p} \rangle \langle \vec{p} | \, d^3 p.$$ Then you pass the ket $| \psi \rangle$ inside the integral and pair it up with the bra $\langle p |$, forming $\psi(\vec{p})$. Next you do the same with $\langle \vec{r} | \vec{P}$ and apply the definition of $\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$, pair up $\langle \vec{r} | \vec{p} \rangle$ and the rest follows through.

One question: the relation $\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$ makes no sense for me at all. I read this as if he's saying the vector $\vec{p}$ is an eigenvalue associated to the vector $| \vec{p} \rangle$, but eigenvalues are numbers, not vectors! :confused: Can you shed some light on this?
 
Fantini said:
Thank you for answering, topsquark!

I think I understand everything. You write $\vec{P} = \vec{P}\cdot \widehat{I}$ and uses that $$\widehat{I} = \int |\vec{p} \rangle \langle \vec{p} | \, d^3 p.$$ Then you pass the ket $| \psi \rangle$ inside the integral and pair it up with the bra $\langle p |$, forming $\psi(\vec{p})$. Next you do the same with $\langle \vec{r} | \vec{P}$ and apply the definition of $\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$, pair up $\langle \vec{r} | \vec{p} \rangle$ and the rest follows through.

One question: the relation $\vec{P} | \vec{p} \rangle = \vec{p} | \vec{p} \rangle$ makes no sense for me at all. I read this as if he's saying the vector $\vec{p}$ is an eigenvalue associated to the vector $| \vec{p} \rangle$, but eigenvalues are numbers, not vectors! :confused: Can you shed some light on this?
Good notation is not what Quantum Mechanics is famous for.
[math]\vec{P} | \vec{p} > = \vec{p} | \vec{p} >[/math]

[math]| \vec{p} > [/math] is the eigenstate (eigenvector, eigenket, whatever) that "carries" the eigenvalue [math]\vec{p}[/math].

[math]\vec{P}[/math] is the (Hermitian) operator that returns the momentum of the eigenvector [math]| \vec{p} >[/math]. [math]\widehat{P}[/math] is another common symbol for this operator.

So letting the operator [math]\vec{P}[/math] act on [math]| \vec{p} > [/math] gives [math]\vec{P} | \vec{p} > = \vec{p} | \vec{p} > [/math]. And because [math]\vec{P}[/math] is Hermitian we also have [math]< \vec{p} | \vec{P} = < \vec{p} | \vec{p} [/math].

I'm using the symbols that I was taught. You need to make sure you know the terminology that your instructor is using. Please let me know if you have trouble understanding notation and I'll be happy to explain it out to you.

-Dan
 
That seems standard to me. It's just that my mathematician-trained mind sees eigenvalues as numbers, not vectors. :confused: I'll get used to it, I guess. I'm self-studying this. I want to apply for a masters in mathematical physics in a physics institute. To get funding I need to do well in a test consisting of 10 questions, divided in 2 questions of classical mechanics, 2 questions of electromagnetism, 2 questions of quantum mechanics, 2 questions of modern physics and 2 questions of thermodynamics and statistical mechanics.

I'm self-teaching myself three (QM, TSM and MP), while I had one course in CM and EM each.

But I understand your reasoning perfectly. Thanks! :)
 
Fantini said:
That seems standard to me. It's just that my mathematician-trained mind sees eigenvalues as numbers, not vectors. :confused: I'll get used to it, I guess. I'm self-studying this. I want to apply for a masters in mathematical physics in a physics institute. To get funding I need to do well in a test consisting of 10 questions, divided in 2 questions of classical mechanics, 2 questions of electromagnetism, 2 questions of quantum mechanics, 2 questions of modern physics and 2 questions of thermodynamics and statistical mechanics.

I'm self-teaching myself three (QM, TSM and MP), while I had one course in CM and EM each.

But I understand your reasoning perfectly. Thanks! :)
If it makes you feel any better look at it this way: We have three operators [math]P_x \text{, } P_y \text{, and } P_z[/math]

Acting on a ket [math]| \vec{p} > [/math] we get [math]P_x = p_x | \vec{p} > [/math], etc. where [math]p_x[/math] is the x component of the momentum.

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top