Hi, i think the question is a very good one. My own findings from articles on the subject are, that originally Johannes Kepler introduced the concept of Inertia as "a property of an object to resist motion", this was at a time when it was thought that "rest" is the default state of things, and forces are needed to create motion. Later on, Copernicus and then Newton proved by the 1st Law that "motion" is the default state of all things in the universe, and in fact net external forces are needed to bring things to "a state of rest". With this , the 2nd Law said F = ma, => a = F/m where mass came to be referred to as "Inertial Mass". The mass became the fundamental property of matter . It defined the tendency of an object to get a "change in velocity per time" , when any Force acts on it. So, if mass is large, a = F/m should be a low acceleration.
The original question was :- is the Momentum a measure of an object's change in Inertia ?
Inertial Mass is not the same as Inertia. Mass is the correct term, and is the right straightforward measurable property. Of course, there are 2 kinds of definitions floating around- a) Gravitational Mass, and b) Inertial Mass. The latter, Inertial Mass, is considered the superior reference today, because it meausures "m" from " a= F/M" and not by using a weighing scale. Example, for a Space Station in orbit around the earth, due to weightlessness, there is no "g", and two different astronauts if put on a "weighing scale" will show the same reading , but we know this not correct. Hence, they use a special seat to apply some external Force and measure "a" , and from that, they measure the "m". This is Inertial Mass and not Gravitational Mass.
Coming to Momentum concept , I think that got really complicated by the Theory of Relativity. Copernicus in fact said that a ship that starts moving can continue moving around the Earth unless stopped by an external force. But later, in Einstein's two theories of relativity, the point was "provided we stand in a frame of reference such that the ship is seen to be moving" . What if our frame of reference is such that the ship appears stationary? Then Velocity will appear to be =0 , and the Momentum P = mv =0. Hence Momentum itself is not a good measure, rather Change in Momentum will be a good measure. That bring us back to acceleration , and Newton's 2nd law, a=F/m.
Actually, the ship could be moving with a Momentum from an Earth's frame of reference. To overcome this problem, it was agreed by scientists that " change in velocity per unit time " will be more reliable way to find Inertial Mass, as it will get detected by any frame of reference. That would work for normal objects which are not moving at speed of light etc etc .
Let me know if I am making sense.