MTW Box 21.1 - What can "add and subtract" do for Equation (12)?

  • Thread starter Thread starter TerryW
  • Start date Start date
  • Tags Tags
    equation
Click For Summary
The discussion revolves around the challenge of transitioning from Equation (12) to Equation (15) in MTW Chapter 21. The user is attempting to utilize the "add and subtract" technique but finds that it only allows for a replacement of terms without achieving the desired outcome. The resulting expression for δS includes a term that is half of what is expected, leading to confusion about the missing elements in the calculations. Despite exploring additional terms that were initially discarded, no solution has been found. The conversation also includes supportive exchanges between users discussing their progress with the material.
TerryW
Gold Member
Messages
222
Reaction score
20
Homework Statement
Derive Equation (15) from Equation (12)
Relevant Equations
See attachment
I haven't posted for a while and I am still (!) working through some of the things I didn't quite get in MTW Chapter 21.

Here is my latest puzzle.

I want to work out how to get from Equation (12) in the attachment, to Equation (15).

I've tried the "add and subtract" ##\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}A_0\delta t\}_{,i}##

This gives me ##+\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}\delta t\}A_{0,i}## and -##\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}\delta t\}A_{i,0}##

Plus ## \{\frac {(-g)^{\frac12}F^{i0}}{4\pi}\}_{,i}A_0\delta t## and minus ## \{\frac {(-g)^{\frac12}F^{i0}}{4\pi}\}_{,i}A_0\delta t##

All this does is allow me to replace ##\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}A_{i,0}\}## with ##-\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}A_{0,i}\}## which I could have done anyway by index manipulation,

I can then add the two versions of (12) to give a new equation which is $$2\delta S = \int \big[ 2\frac {(-g)^{\frac12}F^{i0}}{4\pi}\delta A_{i}+\{\frac {(-g)^{\frac12}F^{i0}}{4\pi}A_{i,0}-\frac {(-g)^{\frac12}F^{i0}}{4\pi}A_{0,i}\}\delta t -2\mathfrak L\}\big]d^3x$$

What this means is that my result for ##\frac {\delta S}{\delta \Omega}## contains the term ##2F^{i0}(A_{i,0} - A_{0,i})## instead of ##4F^{i0}(A_{i,0} - A_{0,i})##

I then had a look at the Plus and Minus ## \{\frac {(-g)^{\frac12}F^{i0}}{4\pi}\}_{,i}A_0\delta t## terms which I had discarded earlier as they cancel, to see if I could find some extra terms, but I couldn't find anything to fix the problem.

Can anyone point out what I am missing?
RegardsTerryW
 

Attachments

  • Box 21.1.png
    Box 21.1.png
    25.9 KB · Views: 116
Physics news on Phys.org
Hi Terry, I don't think if you remember my other handle though I hadn't forgotten you queries from MTW I did purchase the paper black version from Amazon.com quite a Heavy lifting.

But I'll get there eventually.
Nowadays I am reading Information Theory by Cover and Thomas for my last degree, hopefully I'll achieve it.
Cheers mate, you'll never be forgotten!
 
I mean it is paperback.
 
billtodd said:
Hi Terry, I don't think if you remember my other handle though I hadn't forgotten you queries from MTW I did purchase the paper black version from Amazon.com quite a Heavy lifting.

But I'll get there eventually.
Nowadays I am reading Information Theory by Cover and Thomas for my last degree, hopefully I'll achieve it.
Cheers mate, you'll never be forgotten!
Best of luck with MTW. Should you ever need a steer with any of the problems (I'm currently on Chapter 23), just drop me a message.

CheersTerry W
 
TerryW said:
Best of luck with MTW. Should you ever need a steer with any of the problems (I'm currently on Chapter 23), just drop me a message.

CheersTerry W
We ain't getting younger, but with no Guts no Glory:
 
BTW what was your 'other handle'?
 
TerryW said:
BTW what was your 'other handle'?
Let's just say I am a 21st century polymath... :oldbiggrin: