JimWhoKnew
- 189
- 100
- TL;DR Summary
- see below
I need help with exercise 21.26 in MTW. The question goes like this:
For a thin shell of dust surrounded by vacuum ( ##[T^{in}]=0## , ##\mathbf{t}=0## ), derive the following equations$$\frac{d\sigma}{d\tau}=-\sigma^b{}_{|b}\;\; ,\tag{21.175a}$$$$\mathbf{a}^+ +\mathbf{a}^- =0 \;\; ,\tag{21.175b}$$$$\mathbf{a}^+ -\mathbf{a}^- =4\pi\sigma\mathbf{n} \;\; ,\tag{21.175c}$$$$\mathbf{\gamma}=8\pi\sigma\left(\mathbf{u}\otimes\mathbf{u}+\frac12 \mathbf{g}\right) \;\; .\tag{21.175d}$$Here ##\mathbf{a}^+## and ##\mathbf{a}^-## are the 4-accelerations as measured by accelerometers that are fastened onto the outer and inner sides of the shell, and ##\mathbf{g}## is the 3-metric of the shell.
It's not hard to derive equations a, c & d. The second ( ##\mathbf{a}^+ +\mathbf{a}^- =0## ) is where I get stuck. Intuitively, I understand it as proportional to the "total non-gravitational force" exerted on the shell element between the accelerometers, and therefore it should vanish. But I fail to spot how it can be derived from the equations in section 21.13 and exercise 21.25.
Please help.
For a thin shell of dust surrounded by vacuum ( ##[T^{in}]=0## , ##\mathbf{t}=0## ), derive the following equations$$\frac{d\sigma}{d\tau}=-\sigma^b{}_{|b}\;\; ,\tag{21.175a}$$$$\mathbf{a}^+ +\mathbf{a}^- =0 \;\; ,\tag{21.175b}$$$$\mathbf{a}^+ -\mathbf{a}^- =4\pi\sigma\mathbf{n} \;\; ,\tag{21.175c}$$$$\mathbf{\gamma}=8\pi\sigma\left(\mathbf{u}\otimes\mathbf{u}+\frac12 \mathbf{g}\right) \;\; .\tag{21.175d}$$Here ##\mathbf{a}^+## and ##\mathbf{a}^-## are the 4-accelerations as measured by accelerometers that are fastened onto the outer and inner sides of the shell, and ##\mathbf{g}## is the 3-metric of the shell.
It's not hard to derive equations a, c & d. The second ( ##\mathbf{a}^+ +\mathbf{a}^- =0## ) is where I get stuck. Intuitively, I understand it as proportional to the "total non-gravitational force" exerted on the shell element between the accelerometers, and therefore it should vanish. But I fail to spot how it can be derived from the equations in section 21.13 and exercise 21.25.
Please help.