Let [itex] A = (a_{ij}) [/itex] be a [itex] k\times n[/itex] matrix of rank [itex] k [/itex].(adsbygoogle = window.adsbygoogle || []).push({});

The [itex] k [/itex] row vectors, [itex] a_i [/itex] are linearly independent and span a [itex]k[/itex]-dimensional plane in [itex] \mathbb{R}^n [/itex].

In "Geometry, Topology, and Physics" (Ex 5.5 about the Grassmann manifold), the author states that for a matrix [itex] g\in \textrm{GL}(k,\mathbb{R}) [/itex],

[itex] \overline{A} = gA [/itex] defines the same plane as [itex] A [/itex] because [itex] g [/itex] simply rotates the basis within the [itex] k [/itex]-plane.

I'm having trouble seeing this.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Multiplication by a matrix in GL rotates a plane's basis?

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**