MHB Multiplying in Z/mZ: Solving m=3 & m=7 Questions

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Multiply in Z\mZ question: m= 3, 7 also which m is Z/mZ a field? m=7? m=3? show some steps.?
multiply in Z\mZ
question: m= 3, 7 also which m is Z/mZ a field?
m=7?
m=3?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you want to prove that if $m$ prime, then $\mathbb{Z}/m\mathbb{Z}$ is a field. For all $m\geq 2$ integer, we know that $\mathbb{Z}/m\mathbb{Z}=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}$ is a finite, conmutative and unitary ring. But we also know that a finite integral domain is a field, so we only need to prove that if $m$ prime, there are no divisors of zero.

Suppose $\bar{k}\bar{s}=\bar{0}$, then $ks$ is multiple of $m$ or equivalently $m|ks$. If $m$ prime, $m|k$ or $m|s$ which implies $\bar{k}=\bar{0}$ or $\bar{s}=\bar{0}$.

For example, in the particular case $m=7$ the inverses are
$$(\bar{1})^{-1}=\bar{1},\;(\bar{2})^{-1}=\bar{4},\;(\bar{3})^{-1}=\bar{5},\;(\bar{4})^{-1}=\bar{2},\;(\bar{5})^{-1}=\bar{3},\;(\bar{6})^{-1}=\bar{6}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top