MHB Multiplying in Z/mZ: Solving m=3 & m=7 Questions

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
AI Thread Summary
In the discussion about multiplying in Z/mZ for m=3 and m=7, it is established that Z/mZ is a field when m is prime. Specifically, for m=7, the structure is confirmed as a field because there are no divisors of zero, which is proven through the relationship between multiples and prime factors. The discussion also provides examples of multiplicative inverses in Z/7Z, illustrating the field properties. In contrast, m=3 is similarly treated, reinforcing that both cases involve prime numbers, thus confirming their status as fields. The key takeaway is that Z/mZ is a field if m is prime, with practical examples provided for clarity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Multiply in Z\mZ question: m= 3, 7 also which m is Z/mZ a field? m=7? m=3? show some steps.?
multiply in Z\mZ
question: m= 3, 7 also which m is Z/mZ a field?
m=7?
m=3?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you want to prove that if $m$ prime, then $\mathbb{Z}/m\mathbb{Z}$ is a field. For all $m\geq 2$ integer, we know that $\mathbb{Z}/m\mathbb{Z}=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}$ is a finite, conmutative and unitary ring. But we also know that a finite integral domain is a field, so we only need to prove that if $m$ prime, there are no divisors of zero.

Suppose $\bar{k}\bar{s}=\bar{0}$, then $ks$ is multiple of $m$ or equivalently $m|ks$. If $m$ prime, $m|k$ or $m|s$ which implies $\bar{k}=\bar{0}$ or $\bar{s}=\bar{0}$.

For example, in the particular case $m=7$ the inverses are
$$(\bar{1})^{-1}=\bar{1},\;(\bar{2})^{-1}=\bar{4},\;(\bar{3})^{-1}=\bar{5},\;(\bar{4})^{-1}=\bar{2},\;(\bar{5})^{-1}=\bar{3},\;(\bar{6})^{-1}=\bar{6}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top