MHB Multiplying in Z/mZ: Solving m=3 & m=7 Questions

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
In the discussion about multiplying in Z/mZ for m=3 and m=7, it is established that Z/mZ is a field when m is prime. Specifically, for m=7, the structure is confirmed as a field because there are no divisors of zero, which is proven through the relationship between multiples and prime factors. The discussion also provides examples of multiplicative inverses in Z/7Z, illustrating the field properties. In contrast, m=3 is similarly treated, reinforcing that both cases involve prime numbers, thus confirming their status as fields. The key takeaway is that Z/mZ is a field if m is prime, with practical examples provided for clarity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Multiply in Z\mZ question: m= 3, 7 also which m is Z/mZ a field? m=7? m=3? show some steps.?
multiply in Z\mZ
question: m= 3, 7 also which m is Z/mZ a field?
m=7?
m=3?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you want to prove that if $m$ prime, then $\mathbb{Z}/m\mathbb{Z}$ is a field. For all $m\geq 2$ integer, we know that $\mathbb{Z}/m\mathbb{Z}=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}$ is a finite, conmutative and unitary ring. But we also know that a finite integral domain is a field, so we only need to prove that if $m$ prime, there are no divisors of zero.

Suppose $\bar{k}\bar{s}=\bar{0}$, then $ks$ is multiple of $m$ or equivalently $m|ks$. If $m$ prime, $m|k$ or $m|s$ which implies $\bar{k}=\bar{0}$ or $\bar{s}=\bar{0}$.

For example, in the particular case $m=7$ the inverses are
$$(\bar{1})^{-1}=\bar{1},\;(\bar{2})^{-1}=\bar{4},\;(\bar{3})^{-1}=\bar{5},\;(\bar{4})^{-1}=\bar{2},\;(\bar{5})^{-1}=\bar{3},\;(\bar{6})^{-1}=\bar{6}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K