MHB Multiplying in Z/mZ: Solving m=3 & m=7 Questions

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
AI Thread Summary
In the discussion about multiplying in Z/mZ for m=3 and m=7, it is established that Z/mZ is a field when m is prime. Specifically, for m=7, the structure is confirmed as a field because there are no divisors of zero, which is proven through the relationship between multiples and prime factors. The discussion also provides examples of multiplicative inverses in Z/7Z, illustrating the field properties. In contrast, m=3 is similarly treated, reinforcing that both cases involve prime numbers, thus confirming their status as fields. The key takeaway is that Z/mZ is a field if m is prime, with practical examples provided for clarity.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Multiply in Z\mZ question: m= 3, 7 also which m is Z/mZ a field? m=7? m=3? show some steps.?
multiply in Z\mZ
question: m= 3, 7 also which m is Z/mZ a field?
m=7?
m=3?

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
I suppose you want to prove that if $m$ prime, then $\mathbb{Z}/m\mathbb{Z}$ is a field. For all $m\geq 2$ integer, we know that $\mathbb{Z}/m\mathbb{Z}=\{\bar{0},\bar{1},\ldots,\overline{m-1}\}$ is a finite, conmutative and unitary ring. But we also know that a finite integral domain is a field, so we only need to prove that if $m$ prime, there are no divisors of zero.

Suppose $\bar{k}\bar{s}=\bar{0}$, then $ks$ is multiple of $m$ or equivalently $m|ks$. If $m$ prime, $m|k$ or $m|s$ which implies $\bar{k}=\bar{0}$ or $\bar{s}=\bar{0}$.

For example, in the particular case $m=7$ the inverses are
$$(\bar{1})^{-1}=\bar{1},\;(\bar{2})^{-1}=\bar{4},\;(\bar{3})^{-1}=\bar{5},\;(\bar{4})^{-1}=\bar{2},\;(\bar{5})^{-1}=\bar{3},\;(\bar{6})^{-1}=\bar{6}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top