MHB Nano's question at Yahoo Answers regarding Newton's Law of Cooling

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

I need help with this problem !?

Sandy manages a ceramics shop and uses a 800°F kiln to fire ceramic greenware. After turning off her kiln, she must wait until its temperature gauge reaches 155°F before opening it and removing the ceramic pieces. If room temperature is 70°F and the gauge reads 700°F in 10 minutes, how long must she wait before opening the kiln? Assume the kiln cools according to Newton's Law of Cooling.
(Round you anwer to the nearest whole minute)
a) 512 mins B)94 mins c)369 mins D)146 mins

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Nano,

Newton's law of Cooling states that the time rate of change of the temperature $T$ of an object is proportional to the difference between the ambient temperature $M$ and the temperature of the object. Stated mathematically, this is:

$$\frac{dT}{dt}=-k(T-M)$$ where $$T(0)=T_0,\,0<k\in\mathbb{R}$$ and $$T>M$$.

The ODE is separable and may be written:

$$\frac{1}{T-M}\,dT=-k\,dt$$

Integrating, using the boundaries, and dummy variables of integration, we find:

$$\int_{T_0}^{T(t)}\frac{1}{u-M}\,du=-k\int_0^t v\,dv$$

$$\ln\left(\frac{T(t)-M}{T_0-M} \right)=-kt$$

If we know another point $$\left(t_1,T_1 \right)$$ we may now find $k$:

$$-k=\frac{1}{t_1}\ln\left(\frac{T_1-M}{T_0-M} \right)$$

Hence, we find:

$$t=\frac{t_1\ln\left(\frac{T(t)-M}{T_0-M} \right)}{\ln\left(\frac{T_1-M}{T_0-M} \right)}$$

Using the following given data:

$$t_1=10,\,T(t)=155,\,M=70,\,T_0=800,\,T_1=700$$

we find:

$$t=\frac{10\ln\left(\frac{155-70}{800-70} \right)}{\ln\left(\frac{700-70}{800-70} \right)}=\frac{10\ln\left(\frac{17}{146} \right)}{\ln\left(\frac{63}{73} \right)}\approx145.9628332694268$$

Therefore d) is the correct answer.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top