MHB Natural frequency of a crane dropping a car

AI Thread Summary
The discussion focuses on calculating the natural frequency of a crane's electromagnet after dropping a car. The natural frequency is determined using the mass of the electromagnet and the car, specifically considering the mass right after release. The motion of the electromagnet is modeled as a simple harmonic oscillator, with the equation reflecting its starting position. Maximum tension in the cable occurs when the mass is at rest, aligning with the maximum acceleration criterion. The participant ultimately resolved the calculations independently.
Dustinsfl
Messages
2,217
Reaction score
5
An electromagnet weighing \(3000\) lb is at rest while holding an automobile of weight \(2000\) lb in a junkyard. The electric current is turned off, and the automobile is dropped. Assuming that the crane and the supporting cable have an equivalent spring constant of \(10000\) lb/in, find the following:
(1)the natural frequency of vibration of the electromagnet, (2)the resulting motion of the electromagnet, and (3)the maximum tension developed in the cable during motion.

For (1), would it be \(\omega_n = \sqrt{\frac{10000}{5000}}\) or \(\omega_n = \sqrt{\frac{10000}{3000}}\)? Do we look at the mass right before release or right after release?
For (2), this is a simple harmonic oscillator so \(x(t) = A\cos(\omega_nt) + B\sin(\omega_nt)\).
Not sure how to do (3)
 
Mathematics news on Phys.org
For (1), you would look at the mass right after release, since this is the mass that is being accelerated by the cable.
For (2), it would be $$x(t)=-B \cos (\omega t)$$, since the mass starts from the lowest point at t=0.
For (3), remember that the maximum force (tension) occurs when the acceleration is maximum.
Can you proceed?
 
Alternatively for (3), the maximum tension will occur when the mass is at rest (this is just a restatement of the maximum acceleration criterion).
 
jacobi said:
For (1), you would look at the mass right after release, since this is the mass that is being accelerated by the cable.
For (2), it would be $$x(t)=-B \cos (\omega t)$$, since the mass starts from the lowest point at t=0.
For (3), remember that the maximum force (tension) occurs when the acceleration is maximum.
Can you proceed?

Thanks but I figured out everything yesterday.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top