MHB Need formula for solving ellipse radius with equal spacing points

AI Thread Summary
To calculate the radii for an oval bicycle wheel with equal spacing for spokes, a parametric representation of the ellipse is used, with formulas for spoke lengths derived from arc length calculations. The arc length for a quarter ellipse is computed using elliptic integrals, specifically the complete and incomplete elliptic integrals of the second kind. The method involves dividing the arc length into equal parts and solving for parameters that determine spoke positions. Numerical evaluation of these formulas yields specific spoke lengths based on the defined major and minor radii. This approach allows for precise spoke length calculations necessary for constructing the wheel.
sharplens
Messages
2
Reaction score
0
I'm trying to build an oval bicycle wheel and need a formula to calculate the radii so that I can use the results to calculate the length for each spoke. See diagram for details. Hope someone can help.

View attachment 8645
 

Attachments

  • ellipse_equal_spaced_points.jpg
    ellipse_equal_spaced_points.jpg
    15.9 KB · Views: 133
Mathematics news on Phys.org
Jello, and welcome to MHB! (Wave)

I think what I would do is use a parametric representation of the given ellipse:

$$x(t)=r_{10}\cos(t)$$

$$y(t)=r_{1}\sin(t)$$

And then:

$$r_n=\sqrt{\left(r_{10}\cos(t_n)\right)^2+\left(r_{1}\sin(t_n)\right)^2}$$

where:

$$t_n=\frac{\pi}{18}n$$ where $$n\in\{1,2,3,4,5,6,7,8,9\}$$

I am assuming the angular difference between the spokes is uniform. Are you instead wanting the distance along the ellipse between spokes to be uniform?
 
Hi sharplens, welcome to MHB! ;)

Do you want equi-parametrized, which is what Mark gave the formulas for?
View attachment 8646

Or equi-angular?
View attachment 8648

Or equi-distant?
View attachment 8647

Admittedly, Mark's formulas are the simplest and most straight forward.
 

Attachments

  • elliptic_spokes_equiparam.png
    elliptic_spokes_equiparam.png
    7.8 KB · Views: 127
  • elliptic_spokes_equiangle.png
    elliptic_spokes_equiangle.png
    8.5 KB · Views: 127
  • elliptic_spokes_equidist.png
    elliptic_spokes_equidist.png
    8.1 KB · Views: 113
I want equal distance along the arc. That's equivalent to the spoke holes on an oval bicycle rim. Thanks for the nice colorful graph. :)
 
sharplens said:
I want equal distance along the arc. That's equivalent to the spoke holes on an oval bicycle rim. Thanks for the nice colorful graph. :)
The method is a bit involved, so please bear with me.
Or jump to the end for the results. ;)Let $a$ be the length of the longest spoke $r_{10}$.
Let $b$ be the length of the shortest spoke $r_{1}$.

First we need to find the arc length of the 90 degree angle, which is:
$$\text{arclength} = \int_0^{\pi/2} s'(t)\,dt = \int_0^{\pi/2} \sqrt{a^2\sin^2 t + b^2\cos^2 t}\,dt$$

Then we need to divide it into 9 equal parts $\Delta s$ for the 10 spokes.
$$\Delta s = \frac 19 \text{arclength}$$

Next is to find the parameters $t_i$ ($i=1,...,10$) where the spokes are.
For that we need to solve:
$$t'(s) = \frac{1}{\sqrt{a^2\sin^2 t + b^2\cos^2 t}}$$
and find the values for $t$ where $s = (i-1)\Delta s$.

And finally we can calculate the lengths of the spokes $r_i$:
$$\text{length }r_i = \sqrt{a^2\cos^2 t_i + b^2\sin^2 t_i}$$I'm afraid we can only evaluate these formulas numerically.
If I do that for $a=r_{10}=3$ and $b=r_{1}=1$, I find an arc length of $3.3412$.
And the spoke lengths are:
$$r_i = 3.0000,\ 2.8572,\ 2.5909,\ 2.2981,\ 2.0020,\ 1.7146,\ 1.4479,\ 1.2202,\ 1.0595,\ 1.0000$$
 
I found a couple of interesting articles about the Elliptic integrals of the first and second kind, and how we can deal with arc length along the ellipse here.
It means we can simplify the formulas a bit, and look up the results with online tools that are readily available.

$$\text{arclength quarter ellipse} = b\cdot E(1-\frac{a^2}{b^2})$$
where $E$ here is the so called complete elliptic integral of the second kind with parameter $m=k^2$.
The free online Wolfram|Alpha can calculate this for us with [M]b * EllipticE[1 - a^2 / b^2][/M].
Applied to the example you can see here on W|A that the result is indeed $3.3412$.To find the $t_i$ we need to solve:
$$\text{arclength}(t) = b\cdot E(t \mid 1-\frac{a^2}{b^2}) = s$$
where this time $E$ is the incomplete elliptic integral of the second kind, and $s$ is the arc length up to the spoke.

Wolfram|Alpha can do this for us with [M]FindRoot[b * EllipticE[t, 1 - a^2 / b^2] == s][/M].
Applied to spoke 9 of the example, you can see here on W|A that the result is $t_9=0.3293$.Finally, the spoke length is:
$$r_i = \sqrt{a^2\cos^2 t_i + b^2\sin^2 t_i}$$
Applied to the same spoke W|A shows us that this is indeed $r_9=2.8572$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top