A Need help about a demo with inverse weighted variance average

fab13
Messages
300
Reaction score
7
TL;DR Summary
I need help about the understanding of all the steps in a demonstration of the optimal variance by inverse-weighted variance average.
I have a problem of understanding in the following demo :

In a cosmology context with 2 probes (spectroscopic and photometric), let notice ##a_{\ell m, s p}## the spectroscopic and ##a_{\ell m, p h}## the photometric coefficients of the decomposition in spherical harmonics of the distributions of each population. In the absence of any Poisson noise we have:
##\dfrac{a_{\ell m, s p}^{2}}{a_{\ell m, p h}^{2}}=\left(\dfrac{b_{s p}}{b_{p h}}\right)^{2}\quad(1)##
Now let assume the spectroscopic sample is a Poisson realization of density ##N_{s p}## (the galaxy density of the spectroscopic sample) and that we have an unbiased estimator ##\hat{a}_{\ell m, s p}## of ##a_{\ell m, s p}##. We then have the average :
##
\left\langle\dfrac{\hat{a}_{\ell m, s p}^{2}}{a_{\ell m, p h}^{2}}\right\rangle=\dfrac{\left\langle\hat{a}_{\ell m, s p}^{2}\right\rangle}{a_{\ell m, p h}^{2}}=\left(\dfrac{b_{s p}}{b_{p h}}\right)^{2}\quad(2)
##
with its variance :
##
\dfrac{2}{f_{s k y} a_{\ell m, p h}^{4} N_{s p}^{2}}
##
We can therefore build an estimator ##\hat{O}## of ##\left(\dfrac{b_{s p}}{b_{p h}}\right)^{2}## by taking the optimal (inverse-variance weighted) average over all ##\ell## and ##m## :

##\hat{O}=\dfrac{\sum_{\ell=\ell_{\min }}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} a_{\ell m, p h}^{2} \hat{a}_{\ell m, s p}^{2}}{\sum_{\ell=\ell_{\min }}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} a_{\ell m, p h}^{4}}\quad(3)##
the variance of which being:

##\sigma_{\hat{o}}^{2}=\left(\sum_\limits{\ell=\ell_{\min }}^{\ell_{\max }}(2 \ell+1) C_{\ell, p h}^{2}\right)^{-1} \dfrac{2}{f_{s k y} N_{sp}^{2}}\quad(4)##

I don't understanding the passing between eq(3) and eq(4). Indeed, I can't make appear from eq(3) the existing factor ##2\ell+1## in eq(4). The goal is to prove the relation eq(4).

If someone could help me to detail the different necessary steps to obtain eq(4), this would be fine.

I recall that in general, ##C_{\ell}=\dfrac{1}{2\ell+1}\sum_{m=-\ell}^{+\ell} a_{\ell m}^{2}##

Best regards
 
Last edited:
Physics news on Phys.org
a little up to demonstrate the passing from eq(3) to eq(4) ?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top