How Do You Evaluate the Limit of (1/tan(x) - 1/x)/x Using Taylor Series?

  • Thread starter Thread starter lep11
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion focuses on evaluating the limit of (1/tan(x) - 1/x)/x as x approaches 0 using Taylor series. Participants suggest substituting tan(x) with its Taylor expansion, leading to a series of calculations that reveal a common error in the signs and coefficients used in the expansion. The correct limit is determined to be -1/3, with some contributors recommending the use of L'Hôpital's rule as a simpler alternative. The conversation emphasizes the importance of correctly applying Taylor series and checking for accuracy in the expansions used. Ultimately, the limit evaluation showcases the interplay between different mathematical techniques.
lep11
Messages
380
Reaction score
7

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


I began by substituting ##tanx## with ##x+\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^2(x+\frac{x^3}{3}+x^3ε(x))}=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0
 
Last edited:
Physics news on Phys.org
lep11 said:

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


substituting ##tanx## with ##x-\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})##

You're not far from the answer. After cancellations, you have: \frac{\frac{x^3}{3} + ...}{x^3 + ...}, where ... represents higher-order terms. If you ignore the higher-order terms, what do you get?
 
stevendaryl said:
You're not far from the answer. After cancellations, you have: \frac{\frac{x^3}{3} + ...}{x^3 + ...}, where ... represents higher-order terms. If you ignore the higher-order terms, what do you get?
It's 1/3. But where to use the hint I am given?
 
Last edited:
You lost a minus sign in the numerator.
 
lep11 said:
It's 1/3. But where to use the hint I am given?

I don't get that, either.
 
Samy_A said:
You lost a minus sign in the numerator.
You are right. It's a typo.
 
lep11 said:

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


I began by substituting ##tanx## with ##x-\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{\frac{x^3}{3}+x^3ε(x))}{x^2(x-\frac{x^3}{3}+x^3ε(x))}=\frac{\frac{x^3}{3}+x^3ε(x))}{x^3-\frac{x^4}{3}+x^4ε(x))}##??

I think you've got the wrong series for ##tan(x)##. Check your coefficients. Also, if you are going to use the Taylor series, you should use the series for ##1/tan(x)## by applying the binomial expansion to the series for ##tan(x)## or using the series for ##cot(x)##.

That said, this one looks tailor-made(!) for L'Hopital, using ##tan = sin/cos##.
 
Samy_A said:
You lost a minus sign in the numerator.

No, I think he started with the wrong expansion for tan(x). It should be tan(x) = x + \frac{x^3}{3} + ... not x - \frac{x^3}{3}
 
stevendaryl said:
No, I think he started with the wrong expansion for tan(x). It should be tan(x) = x + \frac{x^3}{3} + ... not x - \frac{x^3}{3}
Yes, he has a wrong Taylor series. In the denominator, that should have been ##+\frac{x^3}{3}##. But in the numerator, he expands ##x-\tan x##, so the ##\frac{x^3}{3}## gets a minus sign.
When taking the limit, the ##x³## term resulting from the ##\tan## series in the denominator is not important, but the one in the numerator is.
The correct limit is ##-\frac13##.
 
  • #10
My advice would be to do it the easy way using L'Hopital so you know what the answer is, then do it the hard way using Taylor series :wink:
 
  • #11
PeroK said:
My advice would be to do it the easy way using L'Hopital so you know what the answer is, then do it the hard way using Taylor series :wink:
Sure, the hints he got are strange. This is, as you said, tailor-made(!) for L'Hopital.
 
  • #12
##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=...=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0

Looks like I didn't need the hint. However, I think I'm supposed to derive the Taylor formula I used for the problem. We have covered expansions for sinx and cos x in class. So ##tanx=\frac{sinx}{cosx}=\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-...}{1-\frac{x^2}{2!}+\frac{x^4}{4!}-...}=##
 
Last edited:
  • #13
lep11 said:
##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=...=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0

Looks like I didn't need the hint. However, I think I'm supposed to derive the Taylor formula I used for the problem. We have covered expansions for sinx and cos x in class. So ##tanx=\frac{sinx}{cosx}=\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-...}{1-\frac{x^2}{2!}+\frac{x^4}{4!}-...}=##

I would go for: ##1/tanx = cosx/sinx##

You might as well make things easy for yourself!

Use the binomial for ##1/sinx = (x-\frac{x^3}{3!}+\frac{x^5}{5!}- \dots)^{-1} = (1/x)(1-\frac{x^2}{3!}+\frac{x^4}{5!}- \dots)^{-1}##
 
  • #14
I actually derived the expansion for ##\tan x## from the definition of taylor formula. ##f'(x)=D\tan x=1+\tan^2 x##, ##f'(0)=1##
##f''(x)=2\tan x(1+\tan^2 x)##, ##f''(0)=0## etc. and got ##\tan x=x+\frac{x^3}{3}+x^3ε(x)##. I think this is maybe shorter and nicer than deriving it by long division.
 
Last edited:
  • #15
PeroK said:
I would go for: ##1/ \tan x = \cos x / \sin x##
I thought I had posted something on this a day or two ago. Using the first of Perok's suggestions, then common denominator, etc. :

##\displaystyle \
\frac{1}{x}\left(\frac{1}{\tan x}-\frac{1}{x}\right)
\ ##

##\displaystyle \
=\frac{x \cos x - \sin x}{x^2\sin x}
\ ##

Now use the Taylor expansions for sin x and cos x .
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
17
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K