MHB Need help finding derivatives and concavity.

  • Thread starter Thread starter yli
  • Start date Start date
  • Tags Tags
    Derivatives
Click For Summary
The discussion revolves around finding the first and second derivatives of a function using the quotient rule, with particular focus on simplifying the expressions correctly. The user initially struggles with the derivative calculations and critical values, ultimately determining that the function is always increasing within the stated domain, as both critical points identified are outside this domain. The second derivative is also discussed, leading to a simplified form that helps in analyzing concavity. The conversation emphasizes the importance of correctly identifying critical values and understanding their implications on the function's behavior.
yli
Messages
10
Reaction score
0
Hi, I am having some trouble with this problem.
View attachment 7483
I have completed part a but I am stuck on part b and c.
I used the quotient rule to try and find the first derivative, but I am unsure if I have done so correctly. This is my work for part b so far.
\[g\prime(x)=\dfrac{(bc+ax^d)(c+dx^{d-1})-(c+x^d)(bc+adx^{d-1})}{(c+x^d)^2}
\]
If I am doing this properly, I am a bit unsure of how I should simplify this derivative. Thanks, for any help.
 

Attachments

  • Q2AS6c.png
    Q2AS6c.png
    15.8 KB · Views: 138
Physics news on Phys.org
Hello, and welcome to MHB, yli! (Wave)

The quotient rule states:

$$\frac{d}{dx}\left(\frac{f_1(x)}{f_2(x)}\right)=\frac{f_1'(x)f_2(x)-f_1(x)f_2'(x)}{f_2^2(x)}$$

Now, let's look at what we have:

$$f_1(x)=bc+ax^d$$

$$f_2(x)=c+x^d$$

Bearing in mind that $a,\,b,\,c,\,d$ are all constants, can you find:

$$f_1'(x)=\,?$$

$$f_2'(x)=\,?$$
 
Since bc is a constant, I am assuming that it will become 0, and so the derivative of the first part should be \[(adx^{d-1})\] Then the derivative of the second part I am assuming is \[(x^{d-1})\] Sorry I am really bad at this and therefore still somewhat confused. Would this be correct?
\[g\prime(x)=\dfrac{(dx^{d-1})(bc+ax^d)-(c+x^d)(adx^{d-1})}{(c+x^d)^2}\]
 
yli said:
Since bc is a constant, I am assuming that it will become 0, and so the derivative of the first part should be \[(adx^{d-1})\] Then the derivative of the second part I am assuming is \[(x^{d-1})\] Sorry I am really bad at this and therefore still somewhat confused. Would this be correct?
\[g\prime(x)=\dfrac{(dx^{d-1})(bc+ax^d)-(c+x^d)(adx^{d-1})}{(c+x^d)^2}\]

You have the negative of the derivative...you should have:

$$g'(x)=\frac{\left(adx^{d-1}\right)\left(c+x^d\right)-\left(bc+ax^d\right)\left(dx^{d-1}\right)}{\left(c+x^d\right)^2}$$

Now, factor the numerator completely...what do you get?
 
Oh, that was a silly mistake. Once I factored I got
\[g\prime(x)=\dfrac{(a-b)cdx^{d-1}}{(c+x^d)^2}\]

I also tried to find the second derivative from this as well, would it be

\[g\prime\prime(x)=\dfrac{(a-b)cd(c+x^d)(x^{d-2}((d-1))(c+x^d)-2dx^d))}{(c+x^d)^4}
\]
I am a bit confused about how I can find the critical values for part b, and the inflection points for part c.
 
yli said:
Oh, that was a silly mistake. Once I factored I got
\[g\prime(x)=\dfrac{(a-b)cdx^{d-1}}{(c+x^d)^2}\]

Yes, that's what I got as well. (Yes)

Before we move on to concavity, let's identify our critical values...that is, those values of $x$ in the given domain where either the numerator is zero, or the denominator is zero. What do you find?
 
Hmmm, this is the part I was confused about because, critical points are where the function is equal to 0. When I set the function to 0, I am lost about what I am supposed to do next,

\[\dfrac{(a-b)cdx^{d-1}}{(c+x^d)^2}=0
\]
\[(a-b)cdx^{d-1}=0
\]
I thought about dividing (a-b) from both sides, but if I do that, I am unsure where to go from there. In this case would the critical value be at x=0? For getting the second critical value where the denominator is equal to zero, when I finish, I think I get \[−^d\sqrt{c}
\]
Does that make sense?
 
yli said:
Hmmm, this is the part I was confused about because, critical points are where the function is equal to 0. When I set the function to 0, I am lost about what I am supposed to do next,

\[\dfrac{(a-b)cdx^{d-1}}{(c+x^d)^2}=0
\]
\[(a-b)cdx^{d-1}=0
\]
I thought about dividing (a-b) from both sides, but if I do that, I am unsure where to go from there. In this case would the critical value be at x=0?

Yes, since we are given $b<a$, then we know $0<a-b$, and so we are not potentially dividing by zero. $c$ and $d$ are post positive, and so they cannot be zero, so we may divide them out as well, and we are left with:

$$x^{d-1}=0\implies x=0$$

Is this part of the stated domain?

yli said:
For getting the second critical value where the denominator is equal to zero, when I finish, I think I get \[−^d\sqrt{c}
\]
Does that make sense?

Yes:

$$(c+x^d)^2=0$$

$$c+x^d=0$$

$$x=(-c)^{\frac{1}{d}}$$

Since $c$ is positive this would make $x<0$ or imaginary...is this part of the stated domain?
 
I believe that these two critical points do not exist on the graph for this function since the domain is restricted to values of x greater than 0. Also because the values of x have to be greater than 0, I am assuming that this function is always increasing. If this is correct, how would I go about finding concavity?
 
  • #10
yli said:
I believe that these two critical points do not exist on the graph for this function since the domain is restricted to values of x greater than 0. Also because the values of x have to be greater than 0, I am assuming that this function is always increasing. If this is correct, how would I go about finding concavity?

Yes, neither critical value is in the stated domain, and you are also correct in that for all $x$ within the stated domain, we have:

$$g'(x)>0$$

The function $g(x)$ increases monotonically from:

$$\lim_{x\to0^{+}}g(x)=b$$

to:

$$\lim_{x\to\infty}g(x)=a$$

Okay, earlier you stated:

yli said:
...I also tried to find the second derivative from this as well, would it be

\[g\prime\prime(x)=\dfrac{(a-b)cd(c+x^d)(x^{d-2}((d-1))(c+x^d)-2dx^d))}{(c+x^d)^4}
\]

Let me check your result:

$$g''(x)=\frac{(a-b)cd(d-1)x^{d-2}\left(c+x^d\right)^2-(a-b)cdx^{d-1}\left(2\left(c+x^d\right)dx^{d-1}\right)}{\left(\left(c+x^d\right)^2\right)^2}$$

$$g''(x)=\frac{(a-b)cdx^{d-2}\left(c+x^d\right)\left((d-1)\left(c+x^d\right)-2dx^d\right)}{\left(c+x^d\right)^4}$$

Yes, we seem to agree here. Let's further simplify:

$$g''(x)=\frac{(a-b)cdx^{d-2}\left(c+x^d\right)\left(c(d-1)-(d+1)x^d\right)}{\left(c+x^d\right)^4}$$

What critical values are in the stated domain?
 
  • #11
Sorry, this is where I am stuck. The algebra is starting to confuse me a bit more so than usual. Could I get a hint of how I am supposed to find the critical values?
 
  • #12
yli said:
Sorry, this is where I am stuck. The algebra is starting to confuse me a bit more so than usual. Could I get a hint of how I am supposed to find the critical values?

From our earlier analysis of the first derivative, we know the only factor in either the numerator or denominator we need to consider is:

$$c(d-1)-(d+1)x^d=0$$

What do you get when solving for $x$? Are there any restrictions on any of the parameters we need to apply?
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
890
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
23
Views
755
  • · Replies 2 ·
Replies
2
Views
2K