- #1

- 6

- 0

Im trying to calculate Cumulative distribution function by hand:

[itex]\int^{1}_{-1}\frac{1}{2\pi} e^{\frac{-z^{2}}{2}} dz[/itex] or wolfram alpha: integrate 1/sqrt(2*pi) * e^(-z^2 /2) dz from -1 to 1

Anyway, this is the tricky part, how do this? (I left out the lefthand part above part for easier readability):

[itex]\int e^{\frac{-z^{2}}{2}} dz = [/itex]

[itex]u = \frac{-z^{2}}{2} [/itex]

[itex]du = -z dz[/itex]

[itex]\frac{du}{-z} = dz[/itex]

[itex]\int e^{u} \frac{du}{-z} = [/itex]

then? How do i need to do?. Can any friendly soul here show me step by step how to solve this?

best regrads

invictor