jVincent said:
Year, thanks for the post, however I'm not quite sure how this experiment rules out a hiddenvariable model. I'm a little stumped with what they define as a "classical" model. Why is it that the classical model _must_ be a product of four different functions of the different angles? And why is it that each of these functions must be continues? Most likely I am misunderstanding what they are writing, could you clearify?
Sorry, jVincent, I overlooked that you had replied to my post, since while I was writing a reply to Peter's message a lot of other messages came in.
The mathematics behind these papers are usually very complex, even if in this case the presented results look very simple; they are often shorthands for much more complex expressions, and usually beyond my understanding.
As far as I can tell, the functions for the particles' results have only the measurement angle as a meaningful input (aside from the hidden variables), and if they belong to a local model, they must be independent of each other, that is, the function for each particle can only use that particles measurement angle as an input, none of the other angles. For the cases which allow definite predictions, the result of the last particle is a simple function of the other particles' results, similar as for the spins of two particles where the second is always the opposite of the first.
With multiple particles it is however a bit trickier, so that one can define a set of four experiments such that any possible local-hidden-variable model will make the right predictions only for at most 3 of those 4 experiments, AFAIK. This is because a local model then has more cases to care about than it can accommodate based on having only the measurement angle (and the hidden variables) as an input. The impact of the other measurement angles creates to many different cases, as though it could do something that would be right for any such case. As far as I understand.
jVincent said:
As I understand the different in the two views is:
Classical: Spin direction is born at the particle birth.
QT: spin direction is born at time of fist measurement.
But this doesn't seem to be what the experiment is regarding.
That is also my understanding, but I think that is also the assumption in this experiment, except that the hidden variables are "born" at particle birth, and the spin is then an outcome of the hidden variables AND the measurement angle on this particle.
Heisenberg uncertainty implies that the spin does not have a 'predefined' value for the first measurement, and that no hidden variables are recognized. (Even though in the case of Bohmian mechanics, the spin will be pseudo-random, so to speak, instead of random).
This is why I don't understand the attempts to accept Heisenberg uncertainty and, at the same time, to assume that the information comes from the common "birth". If one accepts uncertainty, then that means exactly that there will be no such information available, such as from any common "birth". I would think. From my point of view, this kind of local non-realism therefore looks like a non-starter. Yet I might be missing something, and if so, would like to find out.