Leureka said:
I'm curious though, how do you create three angle correlations with pairs of polarized photons?
Here's is Bell's inequality. We intend to measure spin or polarization at each of the two detectors for (the same) three different angles. First, we have the distibution of hidden variables that I posted above. Whatever the overall distribution of variables, it must boil down to some distibution for any three given angles. I'll write these as probabilities this time:
$$p_1: (+, +, +) \ \ \ (-,-,-)$$$$p_2: (+, +, -) \ \ \ (-,-,+)$$$$p_3: (+, -, +) \ \ \ (-,+,-)$$$$p_4: (+, -, -) \ \ \ (-,+,+)$$$$p_5: (-, +, +) \ \ \ (+,-,-)$$$$p_6: (-, +, -) \ \ \ (+,-,+)$$$$p_7: (-, -, +) \ \ \ (+,+,-)$$$$p_8: (-, -, -) \ \ \ (+,+,+)$$Let's label the angles as ##a, b, c## in the order given. We now do a large number of experiments and vary the detectors, so that we have a large number of experiments where the two detectors are set at different angles: detector 1 at angle ##a## with dector 2 at angle ##b##; detector 1 at angle ##a## with detector 2 at angle ##c##; detector 1 at angle ##b##, with detector 2 at angle ##c##; and, vice versa. We now look at some cases:
$$p(a+, b+) = p_3+p_4$$This is the case where we have the first detector set to angle ##a## and get ##+## and also have the second detector set to angle ##b## and get ##+## as well.
Now, this is Bell's idea using the third angle, we also have
$$p(a+, c+) = p_2 + p_4$$$$p(c+, b+) = p_3 + p_7$$This gives us the inequality:
$$p(a+, b+) \le p(a+,c+) + p(c+, b+)$$This is because the left-hand side is just ##p_3 + p_4## and the right-hand side is ##p_3 + p_4 + p_2 + p_7##.
The final thing is to show that QM predicts a violation of this inequality in some cases. We can let ##a = 0, b= 2\theta## and ##c = \theta##. So, the third angle bisects the other two. Now, QM predicts:
$$p(a+, b+) = \sin^2 \theta $$$$p(a+, c+) = p(c+, b+) = \sin^2 \frac \theta 2$$And, Bell's inequality only holds if we have:
$$\sin^2 \theta \le 2\sin^2 \frac \theta 2$$You can actually see now where the issue of non-linearity of the ##\sin^2## distribution is critical. Although, note that it took the introduction of a third, intermediate angle to force the contradiction.
In any case, this equaility simply does not hold. In fact, if we use the trig identities ##2\sin^2 \frac \theta 2 = 1 - \cos \theta## and ##\sin^2 \theta = 1 - \cos^2 \theta##, then Bell's inequality becomes:
$$\cos \theta < cos^2 \theta$$Which fails for any angle ##0 < \theta < \frac \pi 2##.
This mathematics proves that your supposed elliptical distribution (or any distribution) cannot reproduce the QM probability distribution in all cases. All classical distributions must obey Bell's inequality - which QM violates.
In any case, that is Bell's inequality and why QM violates it.