How Does Negation Work in Quantified Statements Involving Pigeons and Holes?

  • Thread starter Thread starter Mathematicsresear
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on the negation of the statement "At least one hole contains at least n+1 pigeons," where n is a natural number. The correct negation is established as "For all holes, the number of pigeons is less than n+1," formally represented as ##\forall L \, : \,|N(L)| < n+1##. The participants clarify the use of existential quantifiers for the phrase "at least one hole" while contrasting it with the treatment of "at least n+1 pigeons." The discussion emphasizes the logical structure of quantified statements and their negations in formal terms.

PREREQUISITES
  • Understanding of first-order logic and quantifiers
  • Familiarity with mathematical notation and set theory
  • Basic knowledge of natural numbers and their properties
  • Ability to interpret logical statements and their negations
NEXT STEPS
  • Study the principles of first-order logic and quantification
  • Learn about set theory and its applications in logic
  • Explore examples of negating quantified statements in mathematics
  • Review formal proofs involving existential and universal quantifiers
USEFUL FOR

Students of mathematics, logic enthusiasts, and anyone interested in understanding quantified statements and their negations in formal logic.

Mathematicsresear
Messages
66
Reaction score
0

Homework Statement


Why is the negation of: Atleast one hole contains atleast n+1 pigeons where n is a natural number

There are less than n+1 pigeons per hole?

Wouldn't it be: There are less than one hole that contains less than n+1 pigeons?

Wouldn't the negation of there exists a hole that contains atleast n+1 pigeons yield

all holes contain less than n+1 pigeons?

Why is the existential quantifier assumed for the phrase: "Atleast one hole" in the first part of the sentence but not for the "atleast n+1 pigeons"?
 
Last edited:
Physics news on Phys.org
Mathematicsresear said:
Why is the negation of: At least one hole contains at least n+1 pigeons where n is a natural number
Let's make it formal and set ##N(L)## the number of pigeons in the hole ##L##.
Then the statement says: ##\exists L\, : \,|N(L)|\geq n+1##
which has the negation: ##\forall L \, : \,|N(L)| < n+1##
or in words
There are less than n+1 pigeons per hole?
 
fresh_42 said:
Let's make it formal and set ##N(L)## the number of pigeons in the hole ##L##.
Then the statement says: ##\exists L\, : \,|N(L)|\geq n+1##
which has the negation: ##\forall L \, : \,|N(L)| < n+1##
or in words
What about my other comments? because that's exactly what I'm confused about, why is atleast turned into an existential quantifier in the beginning of the sentence but not in the other part of the sentence?
 
Mathematicsresear said:
What about my other comments? because that's exactly what I'm confused about, why is at least turned into an existential quantifier in the beginning of the sentence but not in the other part of the sentence?
"At least one hole contains at least n+1 pigeons."

  • at least one hole = subject = exists, for otherwise we wouldn't talk about it; it specifies the subject we are talking about and which is not the empty set, i.e. it is necessary to exist = ##\exists\, L##
  • contains = predicate = announces a property, i.e. something can be said about the hole = ##":"##
  • at least n+1 pigeons = object = the something which can be said about the hole are the number of pigeons in it, i.e. the hole has n+1 pigeons = ##N(L)>n##

Thus we have ##\exists L\, \, : \, N(L) > n##

We can also say: ##\{\,L\,|\,N(L)>n\,\}\neq \emptyset## and then the negation is, that this set is empty. If the set is empty, then it's complement is the entire space, which are all holes in this case. So ##\{\,L\,|\,N(L)>n\,\}= \emptyset \Longrightarrow \{\,L\,|\,N(L)\leq n\,\} = \{\,L\,\}##

We can also say: ##\exists L\, : \,L \wedge N(L)>n## with the negation ##\forall L\, : \,\lnot L \vee N(L)\leq n##, which means, either it isn't a hole, or in case it is, there are at most ##n## pigeons in it.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
9
Views
3K
Replies
3
Views
4K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K
  • · Replies 19 ·
Replies
19
Views
5K