Nernst equation and equilibrium constant

Click For Summary
SUMMARY

The discussion centers on the relationship between the Gibbs free energy change (ΔG), standard Gibbs free energy change (ΔG°), and the equilibrium constant (K) in electrochemical systems. It is established that ΔG° is derived from the standard electrode potential (E°cell) when all species are at unity activity (Q=1), leading to the equation ΔG° = -nFE°cell. The participants clarify that at equilibrium (where ΔG=0), Q equals K, and thus ΔG° can be expressed as ΔG° = -RT ln(K). The nuances of these relationships highlight the importance of understanding the conditions under which these equations hold true.

PREREQUISITES
  • Understanding of Gibbs free energy and its significance in thermodynamics.
  • Familiarity with electrochemical cells and standard electrode potentials.
  • Knowledge of the Nernst equation and its application in calculating cell potentials.
  • Basic concepts of chemical equilibrium and the mass action law.
NEXT STEPS
  • Study the Nernst equation and its implications for non-equilibrium conditions.
  • Explore the derivation and applications of the Gibbs free energy equation in electrochemistry.
  • Investigate the relationship between standard electrode potentials and equilibrium constants.
  • Learn about the conditions under which ΔG, ΔG°, and K are defined and measured.
USEFUL FOR

This discussion is beneficial for chemistry students, electrochemists, and researchers involved in thermodynamics and reaction kinetics, particularly those focusing on electrochemical systems and their equilibrium properties.

Big-Daddy
Messages
333
Reaction score
1
The equation ΔG=-nFEcell, I understand.

I also understand that, at unity activities of all species, Q=1 so R*T*ln(Q)=R*T*ln(1)=0. And therefore Ecell=E°cell and ΔG=ΔG°.

However, surely we cannot then write that ΔG°=-nFE°cell=-R*T*ln(K), since ΔG° is measured at unity activity when Q=1, rather than at K? In other words, ΔG°=-nFE°cell requires that the species be at unity activity (i.e. Q=1) so that it can come from ΔG=-nFEcell. But surely if Q=1 and K≠Q (if K does equal Q then, as we discussed some time ago, nothing is measured because equilibrium has already been reached!), we cannot write ΔG=0, so we cannot write ΔG°=-R*T*ln(K). So we should not be able to make the connection -R*T*ln(K)=-nFE°cell as far as I can see, because ΔG°=-nFE°cell is only true when Q=1 and ΔG°=-R*T*ln(K) is only true when Q=K and thus ΔG=0, and we in general assume that K≠1 (so that we are not at equilibrium to start with, meaning there is some spontaneous reaction that enables us to measure potential).

Separately: do the redox equilibria have the same standard electrode potential regardless of the direction (i.e. whether the forward reaction is the reduction or oxidation)? If not then I guess ΔG=-nFEcell must refer in particular to the equilibrium where the electrons are in the reactants of the forward reaction, since ΔG does depend on direction; if Ecell and E°cell do depend on the direction then of course this is fine.
 
Chemistry news on Phys.org
You must be careful about the interpretation: When the system is in equilibrium, i.e. all activities fulfill the mass action law with K, then Delta G=0 and the electrochemical cell will not show any voltage. However you can infer the value of the equilibrium constant from the voltage in a non-equilibrium situation where all activities are 1, as
\Delta G=\Delta G^0-RT \ln K. Once you know \Delta G^0 from a measurement where all activities are 1, you can calculate the value of K where Delta G=0.
 
True. Thanks for this point. ΔG° is a constant value for a certain equilibrium under a certain set of thermodynamic conditions. Thus we can use it to go back to the equilibrium constant as you say.

Can you help on this thread? https://www.physicsforums.com/showthread.php?t=697677
 
Big-Daddy said:
True. Thanks for this point. ΔG° is a constant value for a certain equilibrium under a certain set of thermodynamic conditions. Thus we can use it to go back to the equilibrium constant as you say.

Can you help on this thread? https://www.physicsforums.com/showthread.php?t=697677

It was my understanding that the constant value of ΔG° = ΔG°f products - ΔG°f reactants in standard states.
So in the quote above where ΔG° is a constant value. What are the certain set of thermodynamic
conditions and certain equilibrium that ΔG° is derived from ?
And also if at equilibrium ΔG = 0 when Q = K = 1
ΔG = ΔG°+RT ln Q then ΔG° = -RT lnK. It looks like ΔG = ΔG° = 0
 
morrobay said:
What are the certain set of thermodynamic
conditions and certain equilibrium that ΔG° is derived from ?

In this case, it is derived from the measurement of E°(cell), which is identical to the measurement of E(cell), which we can actually measure, when all the species involved in the formal cell reaction for the electrode pair are at unity activity or fugacity meaning that Q=1 meaning that ±R*T*ln(Q)=0. E°(cell) can also be calculated from the standard electrode potentials (E°(cell)=E°(Right Electrode)-E°(Left Electrode) when it is written down; thus E°(cell) is dependent on which electrode you write on the right and which you write on the left).

morrobay said:
And also if at equilibrium ΔG = 0 when Q = K = 1

Unusual. Equilibrium's condition is ΔG = 0. Q=1's condition is that the activities and fugacities of all species are at unity. It's not likely that Q=1 coincides with equilibrium. But I'll bite:

morrobay said:
ΔG = ΔG°+RT ln Q then ΔG° = -RT lnK. It looks like ΔG = ΔG° = 0

Of course. Q=1 automatically sets ΔG=ΔG°, as RTln(1) will just be 0. Since you've chosen to be at equilibrium at the same time as Q=1 (which, yes, means that K=1 as well) then ΔG=0 so of course ΔG°=0 as well.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
9
Views
4K