I posted this earlier, but I just realized it might have been in the wrong section. Sorry(adsbygoogle = window.adsbygoogle || []).push({});

Okay, so consider you have system in which ΔG<0 and ΔS>0. Using Gibbs free energy (ΔG=ΔH-TΔS), you'll know that it will always be negative. As the temperature increases, it will actually become more and more negative. This means that as the temperature increases to a higher T, ΔG will become even more negative. making the system favor products much more than reactants.

Now consider the equation for the equilibrium constant, Keq=e^-ΔG/TR. Using this definition, as T gets very high, Keq seems to be going to 1, meaning that there will be an equal amount of product and reactants at a very high temperature.

These two definitions are both correct, yet they seem to contradict one another. Why is that? I feel like I'm missing something very definition based.

Thanks in advance to anyone who helps :)

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Gibbs free energy and equilibrium constant at a high T

**Physics Forums | Science Articles, Homework Help, Discussion**