(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I'm lost at how to derive the probability of a neutrino species surviving an oscillation. After performing calculations, I can't seem to get it into the nice tidy form

[tex]1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)[/tex]

2. Relevant equations

Whatev...

[tex]|\langle\nu_{e}|\psi(t)\rangle|^{2}[/tex]

[tex]E_{i}=\sqrt{p^{2}+m_{i}^{2}}\approx p+\frac{m_{i}^{2}}{2p},~\text{where}~p\gg m[/tex]

[tex]\text{and}~\Delta m^{2}=m_{2}^{2}-m_{1}^{2}[/tex]

3. The attempt at a solution

[tex]\begin{align*}

P_{e\rightarrow\nu_{e}}=\langle\nu_{e}|\psi(t)\rangle&=\langle\nu_{e}|\nu_{e}\rangle e^{-iEt/\hbar}=\left|

\left(

\begin{array}{ccc}

\cos\theta & \sin\theta

\end{array} \right)

\left(

\begin{array}{ccc}

\cos\theta e^{-iE_{1}t/\hbar} \\

\sin\theta e^{-iE_{2}t/\hbar}

\end{array} \right)

\right|^{2} \\

&=|\cos^{2}\theta e^{-iE_{1}t/\hbar}+\sin^{2}\theta e^{-iE_{2}t/\hbar}|^{2} \\

&=|e^{-iE_{1}t/\hbar}(\cos^{2}\theta+\sin^{2}\theta e^{-(iE_{2}-E_{1})t/\hbar})|^{2} \\

&=(\cos^{2}\theta+\sin^{2}\theta e^{-i(E_{2}-E_{1})t/\hbar})(\cos^{2}\theta+\sin^{2}\theta e^{i(E_{2}-E_{1})t/\hbar}) \\

&=\frac{1}{2}\sin^{2}2\theta\left(\cos\frac{\Delta m^{2}t}{2p}-i\sin\frac{\Delta m^{2}t}{2p}+\cos\frac{\Delta m^{2}t}{2p}+i\sin\frac{\Delta m^{2}t}{2p}\right)+\cos^{4}\theta+\sin^{4}\theta \\

&=\sin^{2}2\theta\cos\frac{\Delta m^{2}t}{2p}+\cos^{4}\theta+\sin^{4}\theta \\

&=...? \\

&=1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)

\end{align*}[/tex]

Can someone help me fill in the blank? It would be best if I could do it on my own, so if possible just give me hints. If it is too explicit, then just tell me I guess. But as we all know, in order for me to truly own the idea, I should only be gently pushed toward the answer .

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Neutrino Oscillation Survival Probability

**Physics Forums | Science Articles, Homework Help, Discussion**