New Insight into the Chemistry of Solvents

  • Thread starter Thread starter jedishrfu
  • Start date Start date
  • Tags Tags
    Chemistry Physics
AI Thread Summary
Recent research from the University of Oxford challenges the traditional physics principle that states "opposite charges attract and like charges repel." The study, published in Nature Nanotechnology, reveals that like-charged particles can attract each other when submerged in certain solvents, depending on the solvent's properties and the charge type. However, participants in the discussion express skepticism about the findings, suggesting that the headline may be misleading. They clarify that while the particles still exhibit repulsion, the solvent plays a significant role in facilitating their attraction. Concerns are raised about the reliability of published research, with some likening the claims to pseudoscientific concepts like homeopathy. Overall, the conversation emphasizes the complexity of particle interactions in different environments while questioning the interpretation of the study's results.
Messages
15,464
Reaction score
10,175
TL;DR Summary
The notion of opposite charges attract and like repel has to be modified when dealing with certain types of solvents where like charges may group together.
https://www.newsweek.com/basic-principle-physics-wrong-oxford-university-scientists-say-1874984

Opposites charges attract; like charges repel" is a long-held fundamental principle of physics that you might have heard at school, but your teacher may have been wrong.

Researchers from the University of Oxford's chemistry department found that like-charged particles submerged in solutions were able to attract each other from long distances, depending on the solvent used and the sign of the charge.

...

The study has been published in the journal Nature Nanotechnology.
 
Chemistry news on Phys.org
I must admit I'm as skeptic as @Bystander. To be honest it almost sounds to me like homeopathy. Then again what do I know...?

Being published in a respected journal is no guarantee anymore, is it? Was it ever?

EDIT: Then again I could of course have read the article before proffering my meaning, I apologize.
 
Last edited:
The headline and claim that opposites don't always attract is clickbait. The particles still exhibit repulsive force. The solvent is doing it's own work and bringing them together.
 
sbrothy said:
I must admit I'm as skeptic as @Bystander. To be honest it almost sounds to me like homeopathy. Then again what do I know...?

Being published in a respected journal is no guarantee anymore, is it? Was it ever?

EDIT: Then again I could of course have read the article before proffering my meaning, I apologize.
It's clickbait. You didn't miss anything in the article. In a particular solvent, it is more energetically favorable for the solvent to move like charges closer together. The charges are still repelling each other, of course.
 
  • Informative
  • Like
Likes hajonnes and sbrothy
If you consider the electron gas as a solvent for the positive ionic cores in a metal, the Cooper mechanism in superconductors is just of this form
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
I'm trying to find a cheap DIY method to etch holes of various shapes through 0.3mm Aluminium sheet using 5-10% Sodium Hydroxide. The idea is to apply a resist to the Aluminium then selectively ablate it off using a diode laser cutter and then dissolve away the Aluminium using Sodium Hydroxide. By cheap I mean resists costing say £20 in small quantities. The Internet has suggested various resists to try including... Enamel paint (only survived seconds in the NaOH!) Acrylic paint (only...
Back
Top