MHB New to Linear Algebra - LU Decomposition

pp123123
Messages
5
Reaction score
0
Just came across LU decomposition and I am not sure how to work on this problem:

Let L and L1 be invertible lower triangular matrices, and let U and U1 be invertible upper triangular matrices. Show that LU=L1U1 if and only if there exists an invertible diagonal matrix D such that L1=LD and U1=D-1U. [Hint: Scrutinize L-1L1=UU1-1]

I could work on the part till L-1L1=UU1-1, but I am not sure what I could do further. Give me some hints (and I don't actually know how to prove iff statements)?

Thankss!
 
Physics news on Phys.org
pp123123 said:
Just came across LU decomposition and I am not sure how to work on this problem:

Let L and L1 be invertible lower triangular matrices, and let U and U1 be invertible upper triangular matrices. Show that LU=L1U1 if and only if there exists an invertible diagonal matrix D such that L1=LD and U1=D-1U. [Hint: Scrutinize L-1L1=UU1-1]

I could work on the part till L-1L1=UU1-1, but I am not sure what I could do further. Give me some hints (and I don't actually know how to prove iff statements)?
In the equation $L^{-1}L_1 = UU_1^{-1}$, the left side is a lower-triangular matrix, and the right side is an upper-triangular matrix. If they are equal then they must represent a matrix that is both lower-triangular and upper-triangular. What can you say about such a matrix?

To prove an iff statement, you must show that the implication works in both directions. In this case, you first need to prove that if $LU = L_1U_1$ then there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$. Then you also have to prove the converse implication, namely that if there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$ then it follows that $LU = L_1U_1$.
 
Opalg said:
In the equation $L^{-1}L_1 = UU_1^{-1}$, the left side is a lower-triangular matrix, and the right side is an upper-triangular matrix. If they are equal then they must represent a matrix that is both lower-triangular and upper-triangular. What can you say about such a matrix?

To prove an iff statement, you must show that the implication works in both directions. In this case, you first need to prove that if $LU = L_1U_1$ then there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$. Then you also have to prove the converse implication, namely that if there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$ then it follows that $LU = L_1U_1$.

Oh I get it. So is it okay to write something like:

Due to the fact that $L^{-1}L_1 = UU_1^{-1}$
The resulting matrix must be a diagonal matrix under the circumstances that it must both be a lower-triangular and upper-triangular matrix.
Denote $D$ as the desired diagonal matrix.

$L^{-1}L_1 = UU_1^{-1} = D$
As D is a product of two invertible matrices, D must be invertible as well. Moreover,
$L^{-1}L_1 = D$
$LL^{-1}L_1=LD$
$L_1=LD$

$UU_1^{-1}U_1=DU_1$
$U=DU_1$
$D^{-1}U=D^{-1}DU_1$
$U_1=D^{-1}U$

On the other hand, given $L_1=LD$ and $U_1=D^{-1}U$,
$L_1U_1=LDD^{-1}U$
$L_1U_1=LU$

Thus, the statement is proved.

Much Thanks!
 
Thread 'How to define vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 8 ·
Replies
8
Views
11K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K