New to Linear Algebra - LU Decomposition

Click For Summary
SUMMARY

The discussion centers on the proof of the LU decomposition identity, specifically that LU = L1U1 if and only if there exists an invertible diagonal matrix D such that L1 = LD and U1 = D-1U. Participants emphasize the necessity of demonstrating both implications of the if-and-only-if statement. The key insight is that the equality L-1L1 = UU1-1 implies that the resulting matrix must be diagonal, as it is both lower and upper triangular. This leads to the conclusion that D is indeed invertible.

PREREQUISITES
  • Understanding of LU decomposition and its components (L and U matrices)
  • Familiarity with properties of triangular matrices
  • Knowledge of invertible matrices and diagonal matrices
  • Basic proof techniques, particularly for if-and-only-if statements
NEXT STEPS
  • Study the properties of triangular matrices in linear algebra
  • Learn about diagonalization and its implications in matrix theory
  • Explore advanced proof techniques in linear algebra
  • Investigate applications of LU decomposition in numerical methods
USEFUL FOR

Students and professionals in mathematics, particularly those studying linear algebra, as well as educators looking for insights into teaching LU decomposition and proof techniques.

pp123123
Messages
5
Reaction score
0
Just came across LU decomposition and I am not sure how to work on this problem:

Let L and L1 be invertible lower triangular matrices, and let U and U1 be invertible upper triangular matrices. Show that LU=L1U1 if and only if there exists an invertible diagonal matrix D such that L1=LD and U1=D-1U. [Hint: Scrutinize L-1L1=UU1-1]

I could work on the part till L-1L1=UU1-1, but I am not sure what I could do further. Give me some hints (and I don't actually know how to prove iff statements)?

Thankss!
 
Physics news on Phys.org
pp123123 said:
Just came across LU decomposition and I am not sure how to work on this problem:

Let L and L1 be invertible lower triangular matrices, and let U and U1 be invertible upper triangular matrices. Show that LU=L1U1 if and only if there exists an invertible diagonal matrix D such that L1=LD and U1=D-1U. [Hint: Scrutinize L-1L1=UU1-1]

I could work on the part till L-1L1=UU1-1, but I am not sure what I could do further. Give me some hints (and I don't actually know how to prove iff statements)?
In the equation $L^{-1}L_1 = UU_1^{-1}$, the left side is a lower-triangular matrix, and the right side is an upper-triangular matrix. If they are equal then they must represent a matrix that is both lower-triangular and upper-triangular. What can you say about such a matrix?

To prove an iff statement, you must show that the implication works in both directions. In this case, you first need to prove that if $LU = L_1U_1$ then there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$. Then you also have to prove the converse implication, namely that if there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$ then it follows that $LU = L_1U_1$.
 
Opalg said:
In the equation $L^{-1}L_1 = UU_1^{-1}$, the left side is a lower-triangular matrix, and the right side is an upper-triangular matrix. If they are equal then they must represent a matrix that is both lower-triangular and upper-triangular. What can you say about such a matrix?

To prove an iff statement, you must show that the implication works in both directions. In this case, you first need to prove that if $LU = L_1U_1$ then there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$. Then you also have to prove the converse implication, namely that if there exists an invertible diagonal matrix $D$ such that $L_1 = LD$ and $U_1 = D^{-1}U$ then it follows that $LU = L_1U_1$.

Oh I get it. So is it okay to write something like:

Due to the fact that $L^{-1}L_1 = UU_1^{-1}$
The resulting matrix must be a diagonal matrix under the circumstances that it must both be a lower-triangular and upper-triangular matrix.
Denote $D$ as the desired diagonal matrix.

$L^{-1}L_1 = UU_1^{-1} = D$
As D is a product of two invertible matrices, D must be invertible as well. Moreover,
$L^{-1}L_1 = D$
$LL^{-1}L_1=LD$
$L_1=LD$

$UU_1^{-1}U_1=DU_1$
$U=DU_1$
$D^{-1}U=D^{-1}DU_1$
$U_1=D^{-1}U$

On the other hand, given $L_1=LD$ and $U_1=D^{-1}U$,
$L_1U_1=LDD^{-1}U$
$L_1U_1=LU$

Thus, the statement is proved.

Much Thanks!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K