B Newton's Constant in Higher Dim. Spacetimes, Velocity of Light=1

  • B
  • Thread starter Thread starter gerald V
  • Start date Start date
  • Tags Tags
    Constant Dimension
gerald V
Messages
66
Reaction score
3
TL;DR Summary
In our spacetime, Newtons constant has dimension length/energy (the velocity of light set unity). How is this in a different number of dimensions?
In the following, I set the velocity of light unity.
I refer to theories of gravities in higher-dimensional spacetimes.

Newton` s constant converts the curvature scalar with dimension ##lenght^{-2}## into the matter Lagrangian with dimension ##energy/length^3##. So its dimension is ##length/energy##. But in ##d##-dimensional spacetime the dimension of the curvature scalar would remain unchanged, whereas the matter Lagrangian would have dimension ##energy/length^{d-1}##. So, for ##d \ne 4##, Newtons constant would have a different dimension. Is this correct?
 
Physics news on Phys.org
In d-dimensional space, Newton's Law of Gravity would be F_g=\displaystyle G\frac{m_1m_2}{r^{d-1}}
(which follows from Laplace-Poisson's equation in d-dimensions).
By equating that with Newton's Second Law, which is taken to be dimensionally-independent,
we get
in MKS units, for d-dimensional space, [G]=\displaystyle \frac{1}{kg} m^d s^{-2}.

https://en.wikipedia.org/wiki/Gravitational_constant

See: J.D. Barrow's
(1983) Dimensionality
Philosophical Transactions of the Royal Society of London.
Series A, Mathematical and Physical Sciences 310: 337–346 http://doi.org/10.1098/rsta.1983.0095
(See also https://www.jstor.org/stable/37418 )

It seems this following blog summarizes some of the details:
https://thespectrumofriemannium.wordpress.com/2012/11/18/log054-barrow-units/
 
  • Like
Likes vanhees71 and etotheipi
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top