MHB No. of real roots of Quadratic equation

Click For Summary
The equation given is analyzed by defining the function f(x) as the sum of three decreasing functions, each with points of discontinuity. In the interval (e, π), f(x) decreases from +∞ to -∞, indicating the presence of exactly one real root. Similarly, in the interval (π, π+e), f(x) also decreases, suggesting another real root exists there. The overall conclusion is that the equation has two real roots, one in each specified interval. Understanding the behavior of f(x) is crucial for determining the number of real roots.
juantheron
Messages
243
Reaction score
1
The no. of Real Roots of the equation $\displaystyle \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$

My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$

Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$

$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$

So $f(x) = $

Similarly

$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$

So $f(x) = $

y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.

If Not please explain me,

Thanks
 
Last edited:
Mathematics news on Phys.org
Re: no. of real roots of Quadratic equation

Have you considered looking at the discriminant?
 
Re: no. of real roots of Quadratic equation

jacks said:
The no. of Real Roots of the equation $\displaystyle \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$

My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$

Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$

$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$

So $f(x) = $

Similarly

$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$

So $f(x) = $

y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.

If Not please explain me,

Thanks
It looks to me as though you are thinking along the right lines here. Each of the three functions $\dfrac{\pi^e}{x-e}$, $\dfrac{e^\pi}{x-\pi}$, $\dfrac{\pi^{\pi}+e^{e}}{x-\pi-e}$ is a decreasing function, except at the points where it has a discontinuity. For example, the first of those functions, $\dfrac{\pi^e}{x-e}$, decreases from $0$ to $-\infty$ in the interval $(-\infty, e)$, and then decreases from $+\infty$ to $0$ in the interval $(e,\infty).$

When you add the three functions together, their sum $f(x)$ will also be a decreasing function everywhere except at its points of discontinuity. So for example it will decrease from $+\infty$ to $-\infty$ in the interval $(e,\pi)$, and therefore it must have exactly one zero in that interval.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K