MHB No. of real roots of Quadratic equation

AI Thread Summary
The equation given is analyzed by defining the function f(x) as the sum of three decreasing functions, each with points of discontinuity. In the interval (e, π), f(x) decreases from +∞ to -∞, indicating the presence of exactly one real root. Similarly, in the interval (π, π+e), f(x) also decreases, suggesting another real root exists there. The overall conclusion is that the equation has two real roots, one in each specified interval. Understanding the behavior of f(x) is crucial for determining the number of real roots.
juantheron
Messages
243
Reaction score
1
The no. of Real Roots of the equation $\displaystyle \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$

My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$

Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$

$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$

So $f(x) = $

Similarly

$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$

So $f(x) = $

y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.

If Not please explain me,

Thanks
 
Last edited:
Mathematics news on Phys.org
Re: no. of real roots of Quadratic equation

Have you considered looking at the discriminant?
 
Re: no. of real roots of Quadratic equation

jacks said:
The no. of Real Roots of the equation $\displaystyle \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$

My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$

Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$

$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$

So $f(x) = $

Similarly

$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$

So $f(x) = $

y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.

If Not please explain me,

Thanks
It looks to me as though you are thinking along the right lines here. Each of the three functions $\dfrac{\pi^e}{x-e}$, $\dfrac{e^\pi}{x-\pi}$, $\dfrac{\pi^{\pi}+e^{e}}{x-\pi-e}$ is a decreasing function, except at the points where it has a discontinuity. For example, the first of those functions, $\dfrac{\pi^e}{x-e}$, decreases from $0$ to $-\infty$ in the interval $(-\infty, e)$, and then decreases from $+\infty$ to $0$ in the interval $(e,\infty).$

When you add the three functions together, their sum $f(x)$ will also be a decreasing function everywhere except at its points of discontinuity. So for example it will decrease from $+\infty$ to $-\infty$ in the interval $(e,\pi)$, and therefore it must have exactly one zero in that interval.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top