MHB Noetherian Modules - Maximal Condition - Berrick and Keating Ch. 3, page 111

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Condition Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading the book "An Introduction to Rings and Modules with K-theory in View" by A.J. Berrick and M.E. Keating ... ...

I am currently focused on Chapter 3; Noetherian Rings and Polynomial Rings.

I need someone to help me to fully understand the maximal condition for modules and its implications ...

On page 111, Berrick and Keating state the following:

"The module $$M$$ is said to satisfy the maximum condition if any nonempty set of submodules of $$M$$ has a maximal member (with respect to inclusion)"It seems to me that this definition, it it is satisfied means that all the submodules of M must be in a chain of inclusions ... so we cannot have a situation like that depicted in Figure 1 below:https://www.physicsforums.com/attachments/4883Can someone confirm that my basic understanding of the implication of the definition mentioned above is correct?

Peter
 
Physics news on Phys.org
The attachment with figure 1 has disappeared, I try to give an answer anyway.
If you want to apply Zorn’s Lemma on a collection $\hat S$ of sets, which is ordered by inclusion, then you have to prove that every nonempty chain in $\hat S$ has an upper bound. So, if $\hat C$ is a chain in the set $\hat S$, then there must be an $S \in \hat S$ such that for every $C \in \hat C$ we have $C \subset S$. Then $S$ is an upper bound of $\hat C$ and $S$ does NOT need to be an element of $\hat C$.
A maximal element is something else.
If $\hat A$ is a collection of sets (for instance, submodules of a module $P$), then $M \in \hat A$ is maximal in $\hat A$ if the condition [$X \in \hat A$ AND $M \subset X$] implies $X=M$. So notice that the maximal element $M$ of $\hat A$ is an element of $\hat A$ and that $\hat A$ need not be a chain.

The module $M$ is said to satisfy the maximum condition if any nonempty set of submodules of M has a maximal member (with respect to inclusion). So if $\hat S$ is the collection of all submodules of $M$, ordered by inclusion, and every nonempty subset $\hat A \subset \hat S$ has a maximal element, then the module $M$ is said to satisfy the maximal condition.

I am sorry for my clumsy notation, I was looking for $\mathscr{C}$ and $\displaystyle \mathscr{S}$, but could not find them.
 
Last edited:
steenis said:
The attachment with figure 1 has disappeared, I try to give an answer anyway.
If you want to apply Zorn’s Lemma on a collection $\hat S$ of sets, which is ordered by inclusion, then you have to prove that every nonempty chain in $\hat S$ has an upper bound. So, if $\hat C$ is a chain in the set $\hat S$, then there must be an $S \in \hat S$ such that for every $C \in \hat C$ we have $C \subset S$. Then $S$ is an upper bound of $\hat C$ and $S$ does NOT need to be an element of $\hat C$.
A maximal element is something else.
If $\hat A$ is a collection of sets (for instance, submodules of a module $P$), then $M \in \hat A$ is maximal in $\hat A$ if the condition [$X \in \hat A$ AND $M \subset X$] implies $X=M$. So notice that the maximal element $M$ of $\hat A$ is an element of $\hat A$ and that $\hat A$ need not be a chain.

The module $M$ is said to satisfy the maximum condition if any nonempty set of submodules of M has a maximal member (with respect to inclusion). So if $\hat S$ is the collection of all submodules of $M$, ordered by inclusion, and every nonempty subset $\hat A \subset \hat S$ has a maximal element, then the module $M$ is said to satisfy the maximal condition.

I am sorry for my clumsy notation, I was looking for $\mathscr{C}$ and $\displaystyle \mathscr{S}$, but could not find them.
Thanks for the help, Steenis ...

Just reflecting on what you have written and revising the issue now ...

Peter
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top