MHB Noetherian Rings - Dummit and Foote - Chapter 15

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Dummit and Foote Exercise 1 on page 668 states the following:

"Prove the converse to Hilbert's Basis Theorem: if the polynomial ring R[x] is Noetherian then R is Noetherian"

Can someone please help me get started on this exercise.

Peter

[Note: This has also been posted on MHF]
 
Physics news on Phys.org
(This is an old question, so I'll be posting a full answer instead of just hints)

Note that there is a canonical homomorphism $R[X] \to R$ given by $X \mapsto 0$. As Noetherianity is preserved by factoring, if $R[X]$ is Noetherian, then so is $R[X]/(X)$; and the latter is, as per the homomorphism, isomorphic to $R$. $\blacksquare$
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...