Noether’s theorem -- Question about symmetry coordinate transformation

Click For Summary
SUMMARY

This discussion centers on Noether's theorem and its implications for symmetry in coordinate transformations, specifically regarding the function εf(t) in the transformation x(t)' = x(t) + εf(t). The participants clarify that εf(t) cannot be an arbitrary function, as this would disrupt the symmetry of the trajectory, leading to a violation of δS = 0, which is essential for momentum conservation. The conversation emphasizes the necessity of infinitesimal transformations in the Lagrangian formalism and the conditions under which the new Lagrangian remains equivalent to the original.

PREREQUISITES
  • Understanding of Noether's theorem and its application in physics
  • Familiarity with Lagrangian mechanics and the Least Action Principle
  • Knowledge of infinitesimal transformations in configuration-space variables
  • Basic concepts of symmetry in physical systems
NEXT STEPS
  • Study the implications of Noether's theorem on conservation laws in classical mechanics
  • Learn about infinitesimal transformations in Lagrangian mechanics
  • Explore the relationship between symmetry and conservation laws in various physical systems
  • Read F. Scheck's "Mechanics" for a comprehensive treatment of these concepts
USEFUL FOR

Physicists, particularly those specializing in theoretical mechanics, students of classical mechanics, and anyone interested in the foundational principles of symmetry and conservation laws in physics.

gionole
Messages
281
Reaction score
24
TL;DR
Question about symmetry coordinate transformation
Let's say we got one particle in x direction only and we got some motion x(t) which we figured it out through Lagrangian.

In Noether's theorem for coordinate transformation symmetry, we start with the following:

x(t)' = x(t) +εf(t) (ε - some number) - I denoted new path with x(t)'

I'm focusing now on εf(t). In Noether's theorem, εf(t) can't really be any arbitrary function(note that for 2 particles, it must be the same, but I'm not asking that). The reason it can't be arbitrary is if it is kind of wiggling function, then adding it to x(t) will result in a x(t)' where every coordinate of the old path didn't move by the same distance to result in the new path.

Q1: Is the εf(t) really arbitrary and can be anything ?(I know it's small, but that doesn't mean it can't be such a function where middle of it is much bigger than left one, which could cause the new path trajectory definitely not symmetrically moved from old one). Namely, I thought what we mean by coordinate transformation is moving every bit of point on the current trajectory by the same amount. I'm asking as I haven't seen such restrictions in textbooks and if it can be anything, then trajectory has not moved symmetrically - while in Lagrangian, it can be any wiggling function.

Could you say/explain where I'm making wrong statements ? what would you feel like I'm missing ? The best way would be to follow the single particle example first.

Q2: If every point on the trajectory didn't move by the same distance because of εf(t), then we wouldn't have δS = 0 right ? How do I prove that ONLY the symmetric movement of the whole trajectory would cause δS = 0 ? If you assume that δS = 0, then you can get the momentum conservation, but I'm more interested in the proof of δS = 0 in terms of εf(t) and Noether's theorem.
 
Last edited:
Physics news on Phys.org
Well, let's divide Noether into parts.

1) ##L(x,\dot x)=L\Big(g^s(x),\frac{\partial g^s}{\partial x}\dot x\Big),\quad \forall s,##
here ##g^s## is a group of symmetry generated by a vector field ##v(x)##. In this case, Noether says that there exists a first integral of the Lagrangian system:
$$I(x,\dot x)=\frac{\partial L}{\partial \dot x}v.$$
Direct calculation checks it.
2) The general case when the Lagrangian depends on t and the symmetry group is defined on the space (t,x) is reduced to 1) by the following trick.

Assume that ##L=L(t,x,\dot x)##; and perform a change of time ##t=t(\tau)##. From the Least Action Principle, it follows that;
in this new time, the system is described by the following autonomous Lagrangian
$$\tilde L(t,x,x',t')=L(t,x,x'/t')t',\quad '=\frac{d}{d\tau}$$
 
Last edited:
wrobel said:
Well, let's divide Noether into parts.

1) ##L(x,\dot x)=L\Big(g^s(x),\frac{\partial g^s}{\partial x}\dot x\Big),\quad \forall s,##
here ##g^s## is a group of symmetry generated by a vector field ##v(x)##. In this case, Noether says that there exists a first integral of the Lagrangian system:
$$I(x,\dot x)=\frac{\partial L}{\partial \dot x}v.$$
Direct calculation checks it.
2) The general case when both the Lagrangian and the symmetry group depend on the time is reduced to 1) by the following trick.

Assume that ##L=L(t,x,\dot x)##; and perform a change of time ##t=t(\tau)##. From the Least Action Principle, it follows that;
in this new time, the system is described by the following autonomous Lagrangian
$$\tilde L(t,x,x',t')=L(t(\tau),x,x'/t')t',\quad '=\frac{d}{d\tau}$$
I am sorry but this does not help me as I really cant imagine what g and s are even though you said it. Could you read my question and explain it in my words ? Thank you
 
gionole said:
explain it in my words ?
Your words are harder to understand than mine, especially the hardness increases due to relaxed language common for physics textbooks.
Good luck!
 
Last edited:
gionole said:
TL;DR Summary: Question about symmetry coordinate transformation

Let's say we got one particle in x direction only and we got some motion x(t) which we figured it out through Lagrangian.

In Noether's theorem for coordinate transformation symmetry, we start with the following:

x(t)' = x(t) +εf(t) (ε - some number) - I denoted new path with x(t)'

I'm focusing now on εf(t). In Noether's theorem, εf(t) can't really be any arbitrary function(note that for 2 particles, it must be the same, but I'm not asking that). The reason it can't be arbitrary is if it is kind of wiggling function, then adding it to x(t) will result in a x(t)' where every coordinate of the old path didn't move by the same distance to result in the new path.

Q1: Is the εf(t) really arbitrary and can be anything ?(I know it's small, but that doesn't mean it can't be such a function where middle of it is much bigger than left one, which could cause the new path trajectory definitely not symmetrically moved from old one). Namely, I thought what we mean by coordinate transformation is moving every bit of point on the current trajectory by the same amount. I'm asking as I haven't seen such restrictions in textbooks and if it can be anything, then trajectory has not moved symmetrically - while in Lagrangian, it can be any wiggling function.

Could you say/explain where I'm making wrong statements ? what would you feel like I'm missing ? The best way would be to follow the single particle example first.

Q2: If every point on the trajectory didn't move by the same distance because of εf(t), then we wouldn't have δS = 0 right ? How do I prove that ONLY the symmetric movement of the whole trajectory would cause δS = 0 ? If you assume that δS = 0, then you can get the momentum conservation, but I'm more interested in the proof of δS = 0 in terms of εf(t) and Noether's theorem.
In Noether's theorem it's sufficient to consider "infinitesimal transformations" of time and configuration-space variables. In the Lagrange formalism it's of the form
$$q^{\prime j}=q^j + \delta \epsilon Q^j(q,\dot{q},t), \quad t'=t+\delta \epsilon \Theta(q,\dot{q},t).$$
Then you demand that the new Lagrangian is equivalent to the old, i.e., that there exists a function ##\Omega(q^j,t)## (it must NOT be dependent on the ##\dot{q}^j##!)
$$L'(q',\dot{q}',t) = \frac{\mathrm{d} t'}{\mathrm{d} t} L[q^{\prime j}(q,\dot{q},t),\dot{q}^{\prime j}(q,\dot{q},t)) + \frac{\mathrm{d}}{\mathrm{d} t} \Omega(q^j,t).$$
Then the above infinitesimal transformation is a symmetry transformation.

Then, using the equations of motion (Euler-Lagrange equations) you can show that this implies the existence of a conserved quantity, which is given in terms of ##Q^j##, ##T##, and ##\Omega##.

I think there's a good treatment in Scheck's textbook on mechanics:

F. Scheck, Mechanics, Springer (2010)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
686
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
2K