Dear Users,(adsbygoogle = window.adsbygoogle || []).push({});

For normally distributed random variables x and y's p.d.f.:

[tex] \frac{1} {\sqrt{2\pi \sigma_x^2}}\exp\left\{- \frac{(x - \mu_x)^2}{2 \sigma_x^2}\right\} [/tex]

and

[tex] \frac{1} {\sqrt{2\pi \sigma_y^2}}\exp\left\{- \frac{(y - \mu_y)^2}{2 \sigma_y^2}\right\} [/tex]

What will be the p.d.f. of ln(x) - ln(y)? Is there any method to find it?

I think the followings are the p.d.f.s of u=ln(x) and v=ln(y) given x and y are normally distributed:

[tex] \frac{1} {\sqrt{2\pi \sigma_x^2}}\exp\left\{u - \frac{(e^u - \mu_x)^2}{2 \sigma_x^2}\right\} [/tex]

and

[tex] \frac{1} {\sqrt{2\pi \sigma_y^2}}\exp\left\{v - \frac{(e^v - \mu_y)^2}{2 \sigma_y^2}\right\} [/tex]

I am trying to find the p.d.f. of ln(x)-ln(y). Any suggestions?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Normal and exponential-normal (?) distribution

Can you offer guidance or do you also need help?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**