For circular region, why is [tex]\frac{\partial}{\partial n}G(r,\theta,r_0,\phi)= \frac{\partial}{\partial r_0}G(r,\theta,r_0,\phi) [/tex] ?(adsbygoogle = window.adsbygoogle || []).push({});

Where [itex]\; \hat{n} \:[/itex] is the outward unit normal of [itex]C_R[/itex].

Let circular region [itex]D_R[/itex] with radius [itex]R \hbox { and possitive oriented boundary }\; C_R[/itex]. Let [itex]u(r_0,\theta)[/itex] be harmonic function in [itex]D_R[/itex].

The Green's function for Polar coordinate is found to be:

[tex] G(r,\theta,r_0,\phi) = \frac{1}{2} ln[R^2 \frac{r^2+r_0^2 -2rr_0 cos(\theta-\phi)}{r^2r_0^2 + R^4 - 2rr_0R^2 cos(\theta-\phi)}] [/tex]

Where [itex]\; \theta \;[/itex] is the angle of [itex]\; u(r_0,\theta_0) \;[/itex] and [itex]\; \phi \;[/itex] is the angle of the two points used in Steiner Invertion.

Next I want to solve the Dirichlet problem using Green's function. For any value of a hamonic function [itex]u(r_0,\theta_0) in D_R[/itex]. The standard formular for Dirichlet problem is:

[tex]u(r_0,\theta_0) = \frac{1}{2}\int_{C_R} u(r,\theta) \frac{\partial}{\partial n}G(r,\theta,r_0,\phi) ds[/tex]

Where [tex]\frac{\partial}{\partial n}G(r,\theta,r_0,\phi)= \nabla G(r,\theta,r_0,\phi) \;\cdot \widehat{n} [/tex]

But the book just simply use [tex]\frac{\partial}{\partial r_0}G(r,\theta,r_0,\phi) [/tex] Which is only a simple derivative of G respect to [itex]\; r_0 \;[/itex] where in this case [itex]\; r_0 = R \;[/itex] !!!

[tex]u(r_0,\theta_0) = \frac{1}{2}\int_{C_R} u(r,\theta) \frac{\partial}{\partial r_0}G(r,\theta,r_0,\phi) ds[/tex]

I don't understant how:

[tex]\frac{\partial}{\partial n}G(r,\theta,r_0,\phi)= \frac{\partial}{\partial r_0}G(r,\theta,r_0,\phi) [/tex]

How can a normal derivative become and simple derivative respect to [itex]\; r_0 \;[/itex] only? I know [itex] \widehat{r}_0 \;\hbox { is parallel to outward normal of }\;\; C_R \;[/itex] but the magnitude is not unity like the unit normal. Can anyone explain to me?

Thanks

Alan

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Normal derivative of Green's function on a disk.

**Physics Forums | Science Articles, Homework Help, Discussion**