- #1

- 73

- 0

I have ##E[X] = \mu##

##Var[X] = 9/25##

##SD[X] = 3/5 = 0.6##

An interval for ##\bar{X}## has been recorded: ##\bar{X} \pm 1.05##.

I asked to find ##P(\bar{X} > \mu + 1.05)##

I can "normalize" the distribution through:

##Z = \frac{\bar{X} - \mu}{0.6}## ~ ##N(0,1)##

I'm confused by this next step:

##P(\bar{X} > \mu + 1.05) = P(Z > \frac{1.05}{0.6} = 1.75)##

I'm not sure how you go from the first probability to the other. Could any help please?