- #1

- 42

- 0

## Homework Statement

I'm starting to (trying) teach myself some quantum mechanics out of the Griffiths book, and since there are no answers in the back I have no idea if I'm on the right track or not. Could you guys look over the answer to this equation to see if it looks right?

Consider the wave function [tex] \Psi(x,t) = A e^{-\lambda |x|}e^{-i \omega t}[/tex]

a Normalize [tex]\Psi[/tex]

## Homework Equations

[tex] 1 = \int^\infty_{-\infty} | \Psi |^2 dx [/tex]

## The Attempt at a Solution

[tex]|\Psi(x,t)|^2 = (\Psi*)\Psi[/tex]

[tex]\Psi* = A e^{-\lambda |x|}e^{i \omega t}[/tex]

[tex]|\Psi(x,t)|^2 = A^2e^{-2 \lambda |x|}[/tex]

[tex] 1 = \int^\infty_{-\infty} A^2e^{-2 \lambda |x|} dx = \frac{A^2}{\lambda} [/tex]

[tex] A = \sqrt{\lambda}[/tex]

Look correct?