I Normalization of an Eigenvector in a Matrix

Dwye
Messages
2
Reaction score
0
TL;DR Summary
I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?
ProblemA.18.JPG
AnswerA.18.JPG
 
Physics news on Phys.org
Do you know, how to get the norm of a vector in ##\mathbb{C}^2## or, more generally, how to define a scalar product on a complex vector space? It's very important to get these concepts right, before starting to study quantum theory, for which you need the "infinite-dimensional version" of these ideas, the socalled (separable) Hilbert space (more precisely what physicists do with this is rather the extension to a "rigged Hilbert space").
 
Dwye said:
Summary:: I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?

The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
 
  • Like
Likes vanhees71 and Dwye
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
Thank you very much!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top