Normalization of an Eigenvector in a Matrix

Click For Summary

Discussion Overview

The discussion revolves around the normalization of eigenvectors in the context of linear algebra and quantum mechanics, specifically addressing the scalar product in complex vector spaces and the significance of certain normalization factors.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant inquires about defining a scalar product in complex vector spaces, emphasizing its importance for quantum theory and Hilbert spaces.
  • Another participant discusses a specific example from Griffith's "Introduction to Quantum Mechanics," questioning the necessity of the normalization factor of 1/sqrt(2) for the eigenvector (1, i).
  • It is noted that the vector (1, i) has a magnitude of sqrt(2), and while Griffiths normalizes it, the original vector is also considered a valid answer.
  • Participants agree that normalizing vectors is generally advisable in quantum mechanics, but the normalization factor is not directly related to the sine of 45 degrees.
  • There is a mention of an alternative eigenvector (1, 2i) and its corresponding normalization factor of 1/sqrt(5), suggesting variability in normalization based on the vector's magnitude.

Areas of Agreement / Disagreement

Participants express some agreement on the importance of normalization in quantum mechanics, but there is no consensus on the necessity of the normalization factor in the specific context discussed.

Contextual Notes

The discussion highlights the dependence on definitions of normalization and the context in which eigenvectors are used, particularly in quantum mechanics, without resolving the broader implications of these concepts.

Dwye
Messages
2
Reaction score
0
TL;DR
I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?
ProblemA.18.JPG
AnswerA.18.JPG
 
Physics news on Phys.org
Do you know, how to get the norm of a vector in ##\mathbb{C}^2## or, more generally, how to define a scalar product on a complex vector space? It's very important to get these concepts right, before starting to study quantum theory, for which you need the "infinite-dimensional version" of these ideas, the socalled (separable) Hilbert space (more precisely what physicists do with this is rather the extension to a "rigged Hilbert space").
 
Dwye said:
Summary:: I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?

The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
 
  • Like
Likes   Reactions: vanhees71 and Dwye
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
Thank you very much!
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K