Normalization of Morse potential wavefunctions

Click For Summary

Discussion Overview

The discussion revolves around the normalization of wavefunctions for a Morse potential, specifically addressing the integration bounds and the appropriate normalization formula in quantum mechanics. Participants are exploring the implications of using different variables and integration techniques in the context of wavefunction normalization.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant expresses confusion over the normalization of the Morse potential wavefunctions, noting discrepancies in their integration results.
  • Another participant suggests that the normalization should be defined uniformly over all space and that substitutions for variables must also account for changes in the differential element.
  • A participant questions the validity of the usual normalization formula in quantum mechanics when applied to the wavefunctions defined in terms of the variable z.
  • Some participants assert that the normalization constant is a matter of convention, intended to ensure that the wavefunction squared integrates to unity over all space.
  • There is a challenge to the assumption that the standard normalization formula applies directly without considering the specific definitions and variables involved in the Morse potential context.

Areas of Agreement / Disagreement

Participants exhibit disagreement regarding the correct approach to normalization, with some asserting that the usual quantum mechanical normalization formula is applicable, while others argue that the specific definitions and substitutions in this case complicate its use. The discussion remains unresolved.

Contextual Notes

Participants have not reached consensus on the correct normalization method, and there are unresolved questions regarding the appropriate integration bounds and the relationship between the variables involved in the wavefunction definitions.

Malamala
Messages
348
Reaction score
28
Hello! I am trying to use the wavefunctions of a Morse potential as defined in the link provided. They define a parameter ##z## and the wavefunctions are in terms of z. In my particular case, given their definitions, I have ##\lambda = 132.19377##, ##a=1.318 A^{-1}## and ##R_e = 2.235 A##. I am not sure how to check the normalization of that function. Naively, I would expect to calculate:

$$\int_{z_i}^{z_f}{\psi_N(z)^2}dz$$

and this should be equal to one. However I am getting -263.388. For the limits of integration, I assume that ##z_i## corresponds to the case when ##R=0## i.e. ##z_i = 2\lambda e^{aR}= 5029.85## and ##z_f =0## i.e. when ##R = \infty##. I am pasting below the Mathematica code I am using for the calculations for reference:

Code:
lmbda0 = 132.19377;
a0 = 1.318;
Re0 = 2.235;
xe0 = a0*Re0;
n0 = 0;
alpha0 = 2 lmbda0 - 2 n0 - 1;

f[R_?NumericQ] := (Exp[0.5*(Log[n0!*alpha0] - Log[Gamma[2 lmbda0 - n0]]) + (lmbda0 - n0 - 0.5) Log[z] - 0.5 *z + Log[LaguerreL[n0, alpha0, z]]])^2;

Plot[f[z], {z, 411.145, 163.424}]

NIntegrate[f[z], {z, 500, 100}]

However, if I instead integrate

$$\int_{z_i}^{z_f}{\psi_N(z)^2/z}dz$$

I get one, as expected. Am I doing something wrong? Is the normalization defined differently? Or are my integration bounds wrong? I checked the formula on multiple websites and it seems to be correct, so I am not sure why I need to add by hand that ##1/z## Thank you!
 
Physics news on Phys.org
You should not expect your naive assumption to work. The normalization is defined uniformly bover all space x. When you substitute for x you need to substitute for dx (in terms of dz and z ) as well. I think it will do what you need.
 
hutchphd said:
You should not expect your naive assumption to work. The normalization is defined uniformly bover all space x. When you substitute for x you need to substitute for dx (in terms of dz and z ) as well. I think it will do what you need.
I am not sure I understand. If the function is defined in terms of ##z##, shouldn't the usual normalization formula in quantum mechanics work? How would I know what is the variable of integration in this case (##z##, ##x##, ##R## or something else)?
 
The normalization constant is a convention chosen for convenience. We choose it so that the wavefunction (mod) squared when integrated over all space yields unity.
What is the "usual" normalization formula? What you are assuming does not yield consistent results.
 
hutchphd said:
The normalization constant is a convention chosen for convenience. We choose it so that the wavefunction (mod) squared when integrated over all space yields unity.
What is the "usual" normalization formula? What you are assuming does not yield consistent results.
I thought that in QM, a given wavefunction is normalized if

$$\int_{-\infty}^{\infty}\psi(x)^*\psi(x)dx = 1$$

in our case ##x = z##, the boundaries are as I mentioned above and the function is real so we get just the square of the function. This is the formula I mentioned first above. And the normalization constant is specifically chosen such that this formula is fulfilled. I don't understand why it is wrong.
 
Malamala said:
in our case x=z,
No. Please read the wikipedia article you quoted carefully.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
5K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K