Pietjuh
- 75
- 0
There is this excersise in Griffith's QM text that I can't seem to solve. It's about the calculation of the normalization factor of the spherical harmonic functions using the angular momentum step up operator.
These definitions/results are given:
Y_l^m = B_l^m e^{im\phi} P_l^m (\cos\theta )
L_{+} = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right)
L_+ Y_l^m = A_l^m Y_l^{m+1}
A_l^m = \hbar \sqrt{l(l+1) - m(m+1)}
The problem is to calculate B_l^m. The approach suggested by Griffiths is to calculate L_+ Y_l^m to get a recurrence relation for B_l^m. This is the point where I get stuck. I guess it has something to do with the deravitive of P_l^m. Anyhow, I'll give you my calculation until the point I got stuck and hope for the best that someone sees a mistake :)
<br /> L_+ Y_l^m = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right) B_l^m e^{im\phi} P_l^m (\cos\theta ) <br />
= \hbar e^{i\phi} B_l^m \left [ e^{im\phi}\frac{\partial}{\partial\theta}\left(P_l^m (\cos\theta )\right) + i\cot\theta P_l^m (\cos\theta ) \frac{\partial}{\partial\phi} e^{im\phi} \right]<br />
Now I calculated the derivative of P_l^m using the following formula:
(1-x^2)\frac{dP_l^m}{dx} = \sqrt{1-x^2}P_l^{m+1} - mxP_l^m
So using the chain rule \frac{d P_l^m(\cos\theta)}{d\theta} = \frac{d P_l^m}{dx}\frac{dx}{d\theta} with x=\cos\theta I got:
\frac{d}{d\theta} P_l^m = - \left[\frac{1}{\sqrt{1-\cos^2\theta}}P_l^{m+1} - \frac{m\cos\theta}{\sin^2\theta}P_l^m\right]\sin\theta<br /> = m\frac{\cos\theta}{\sin\theta}P_l^m - P_l^{m+1}
Plugging all this in I got the following result:
\hbar B_l^m \left[ (m-1)P_l^m\cot\theta - P_l^{m+1}\right] = A_l^m B_l^{m+1}P_l^{m+1}
but when I try to solve this for B_l^m I get an exploding expression :(
These definitions/results are given:
Y_l^m = B_l^m e^{im\phi} P_l^m (\cos\theta )
L_{+} = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right)
L_+ Y_l^m = A_l^m Y_l^{m+1}
A_l^m = \hbar \sqrt{l(l+1) - m(m+1)}
The problem is to calculate B_l^m. The approach suggested by Griffiths is to calculate L_+ Y_l^m to get a recurrence relation for B_l^m. This is the point where I get stuck. I guess it has something to do with the deravitive of P_l^m. Anyhow, I'll give you my calculation until the point I got stuck and hope for the best that someone sees a mistake :)
<br /> L_+ Y_l^m = \hbar e^{i\phi}\left(\frac{\partial}{\partial\theta} +i\cot\theta\frac{\partial}{\partial \phi}\right) B_l^m e^{im\phi} P_l^m (\cos\theta ) <br />
= \hbar e^{i\phi} B_l^m \left [ e^{im\phi}\frac{\partial}{\partial\theta}\left(P_l^m (\cos\theta )\right) + i\cot\theta P_l^m (\cos\theta ) \frac{\partial}{\partial\phi} e^{im\phi} \right]<br />
Now I calculated the derivative of P_l^m using the following formula:
(1-x^2)\frac{dP_l^m}{dx} = \sqrt{1-x^2}P_l^{m+1} - mxP_l^m
So using the chain rule \frac{d P_l^m(\cos\theta)}{d\theta} = \frac{d P_l^m}{dx}\frac{dx}{d\theta} with x=\cos\theta I got:
\frac{d}{d\theta} P_l^m = - \left[\frac{1}{\sqrt{1-\cos^2\theta}}P_l^{m+1} - \frac{m\cos\theta}{\sin^2\theta}P_l^m\right]\sin\theta<br /> = m\frac{\cos\theta}{\sin\theta}P_l^m - P_l^{m+1}
Plugging all this in I got the following result:
\hbar B_l^m \left[ (m-1)P_l^m\cot\theta - P_l^{m+1}\right] = A_l^m B_l^{m+1}P_l^{m+1}
but when I try to solve this for B_l^m I get an exploding expression :(