- #1

- 26

- 0

## Main Question or Discussion Point

Actually after I wrote down the query on the invertible matrix which I posted a few days ago I happened to refer again to Kunze Huffman and found that this is a standard theorem regarding transformation of linear operator from one basis to another.

Then I realized that the point which was not clear was that if Tv is a vector in basis B then how could with respect to B' I could write P(Tv) where P is the matrix of transformation from B to B'. What is unclear is that when u are doing this u are actually trying to premultiply a vector which is already in the space W, but according to theorem 8 on pg 53 of the book it says that

Suppose I is an n x n invertible matrix over F. Let V be an n dimensional vector space over F and let B be an ordered basis of V . Then there exists unique ordered basis B' of V such that [alpha] in basis B= P[alpha ] in basis B'.

So how is it here the vector space in which the vector is going to reside and the basis are completely different. Am I missing something very obvious. My thinking is that probably even if the space W has smaller dimension than V it is extended by adding 0s to it to equate V and then trying to apply the above technique. Still I am highly confused of applying a matrix NxN which would transform V -> V on something in W.

Sorry but I do not know how to use the subscripts here for clarity but hopefully I have been able to make my doubt across.

Then I realized that the point which was not clear was that if Tv is a vector in basis B then how could with respect to B' I could write P(Tv) where P is the matrix of transformation from B to B'. What is unclear is that when u are doing this u are actually trying to premultiply a vector which is already in the space W, but according to theorem 8 on pg 53 of the book it says that

Suppose I is an n x n invertible matrix over F. Let V be an n dimensional vector space over F and let B be an ordered basis of V . Then there exists unique ordered basis B' of V such that [alpha] in basis B= P[alpha ] in basis B'.

So how is it here the vector space in which the vector is going to reside and the basis are completely different. Am I missing something very obvious. My thinking is that probably even if the space W has smaller dimension than V it is extended by adding 0s to it to equate V and then trying to apply the above technique. Still I am highly confused of applying a matrix NxN which would transform V -> V on something in W.

Sorry but I do not know how to use the subscripts here for clarity but hopefully I have been able to make my doubt across.