I Notation of the approximation in quantum phase estimation algorithm

Peter_Newman
Messages
155
Reaction score
11
I'am interested in the notation of the approximation in quantum phase estimation algorithm.
In the literature there are different definitions, which I divide into two cases here. Both different in their definition of the ##\delta##. In both cases I start with a quote of the source and show an example of how I understand this in that context.

Let ##\phi_\text{exact} = \varphi_\text{exact} = 0.1011_2## in this scenario we limit our approximation of the phase (##\varphi,\phi##) to 2 Bits.

Case 1:

... let ##\frac{a}{2^m} = 0.a_1...a_m## be the best ##m##-bit estimate of ##\phi##. Then ##\phi = \frac{a}{2^m} + \delta##, where ##0<|\delta|\leq \frac{1}{2^{m+1}}## [Cleve et al. from quant-ph/9708016, p11]

With ##m = 2## Bits e.g. best we can get with ##0 < |\delta| \leq \frac{1}{2^{m+1}}## is:

##\phi_\text{approx} = 0.10_2 + (-0.001_2 \leq \delta \leq 0.001_2) = 0.10_2 + 0.001_2##, since maximum value of ##\delta## is ##\frac{1}{2^3} = 0.001_2##, we leave out ##0.0001## in case of ##\delta## as defined above. I assumed ##0.10_2## is the best estimate we can get with two bits.

Case 2:

Let ##b## be the integer in the range ##0## to ##2^t−1## such that ##b/2^t = 0.b_1 ... b_t## is the best ##t## bit approximation to ##\varphi## which is less than ##\varphi##. That is, the difference ##\delta ≡ \varphi − b/2^t## between
##\varphi## and ##b/2^t## satisfies ##0 ≤ \delta ≤ 2^{−t}##. [Nielsen and Chuang from QC, p223]

With ##t = 2## Bits e.g. best we can get with ##0 < \delta \leq \frac{1}{2^{t}}## is:

##\varphi_\text{approx} = 0.10_2 + (0 < \delta \leq 0.01_2)= 0.10_2 + 0.0011_2##, we see with ##\delta## defined in this way, we get a better approximation. We can at least describe the missing part of delta here exactly. I assumed ##0.10_2## is the best estimate we can get with two bits.My final question is, why do people in the literature also use the first definition of delta (##0<|\delta|\leq \frac{1}{2^{m+1}}##), which would be more inaccurate according to my calculation?I hope that I have written my question understandably and I am very much looking forward to your opinions on this.
 
Last edited:
Physics news on Phys.org
Unfortunately, I haven't made any progress myself, otherwise I would have presented a solution here. Therefore, I am still interested in helpful tips and hints. Is the question so far clear, or is there a need to concretize it a bit?
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top