I Notation of the approximation in quantum phase estimation algorithm

Peter_Newman
Messages
155
Reaction score
11
I'am interested in the notation of the approximation in quantum phase estimation algorithm.
In the literature there are different definitions, which I divide into two cases here. Both different in their definition of the ##\delta##. In both cases I start with a quote of the source and show an example of how I understand this in that context.

Let ##\phi_\text{exact} = \varphi_\text{exact} = 0.1011_2## in this scenario we limit our approximation of the phase (##\varphi,\phi##) to 2 Bits.

Case 1:

... let ##\frac{a}{2^m} = 0.a_1...a_m## be the best ##m##-bit estimate of ##\phi##. Then ##\phi = \frac{a}{2^m} + \delta##, where ##0<|\delta|\leq \frac{1}{2^{m+1}}## [Cleve et al. from quant-ph/9708016, p11]

With ##m = 2## Bits e.g. best we can get with ##0 < |\delta| \leq \frac{1}{2^{m+1}}## is:

##\phi_\text{approx} = 0.10_2 + (-0.001_2 \leq \delta \leq 0.001_2) = 0.10_2 + 0.001_2##, since maximum value of ##\delta## is ##\frac{1}{2^3} = 0.001_2##, we leave out ##0.0001## in case of ##\delta## as defined above. I assumed ##0.10_2## is the best estimate we can get with two bits.

Case 2:

Let ##b## be the integer in the range ##0## to ##2^t−1## such that ##b/2^t = 0.b_1 ... b_t## is the best ##t## bit approximation to ##\varphi## which is less than ##\varphi##. That is, the difference ##\delta ≡ \varphi − b/2^t## between
##\varphi## and ##b/2^t## satisfies ##0 ≤ \delta ≤ 2^{−t}##. [Nielsen and Chuang from QC, p223]

With ##t = 2## Bits e.g. best we can get with ##0 < \delta \leq \frac{1}{2^{t}}## is:

##\varphi_\text{approx} = 0.10_2 + (0 < \delta \leq 0.01_2)= 0.10_2 + 0.0011_2##, we see with ##\delta## defined in this way, we get a better approximation. We can at least describe the missing part of delta here exactly. I assumed ##0.10_2## is the best estimate we can get with two bits.My final question is, why do people in the literature also use the first definition of delta (##0<|\delta|\leq \frac{1}{2^{m+1}}##), which would be more inaccurate according to my calculation?I hope that I have written my question understandably and I am very much looking forward to your opinions on this.
 
Last edited:
Physics news on Phys.org
Unfortunately, I haven't made any progress myself, otherwise I would have presented a solution here. Therefore, I am still interested in helpful tips and hints. Is the question so far clear, or is there a need to concretize it a bit?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top