- #1

- 33

- 1

[tex](x',t',u')= (x\exp(\epsilon), 3t\exp(\epsilon), -2u\exp(\epsilon))[/tex]

So [tex]u'_{t'}-6u'u'_{x'}+u'_{x'x'x'}=-{2\over 3}u_t-24\exp(\epsilon)uu_x-2\exp(-2\epsilon)u_{xxx}[/tex] How does this vanish (so that we get symmetry) given that [itex]u[/itex] satisfies the KdV?