Number of bits required for floating point representation

AI Thread Summary
Floating point representation is essential for approximating real numbers in a finite bit system, typically using a base (β) and precision (p). The number of bits required for representation includes the sign bit, the significand, and the exponent, calculated as log₂(e_max - e_min + 1) + log₂(β^p) + 1. Each digit in the significand must be less than the base, and the exponent range is defined by e_max and e_min. Understanding these calculations is crucial for accurate numerical analysis and representation in computing.
CGandC
Messages
326
Reaction score
34
Relevant equations ( a quote from the book A Concise Introduction to Numerical Analysis by A. C. Faul explaining what is floating point representation ):
We live in a continuous world with infinitely many real numbers. However, a computer has only a finite number of bits. This requires an approximate representation. In the past, several different representations of real numbers have been suggested, but now the most widely used by far is the floating point representation. Each floating point representations has a base ##\beta## (which is always assumed to be even) which is typically 2 (binary), 8 (octal), 10 (decimal), or 16 (hexadecimal), and a precision ##p## which is the number of digits (of base ##\beta## ) held in a floating point number. For example, if ##\beta=10## and ##p=5##, the number 0.1 is represented as ##1.0000 \times 10^{-1}##. On the other hand, if ##\beta=2## and ##p=20##, the decimal number 0.1 cannot be represented exactly but is approximately ##1.1001100110011001100 \times 2^{-4}##. We can write the representation as ##\pm d_0 . d_1 \cdots d_{p-1} \times \beta^e##, where ##d_0 . d_1 \cdots d_{p-1}## is called the significand (or mantissa) and has ##p## digits and ##e## is the exponent. If the leading digit ##d_0## is non-zero, the number is said to be normalized. More precisely ##\pm d_0 . d_1 \cdots d_{p-1} \times \beta^e## is the number
##
\pm\left(d_0+d_1 \beta^{-1}+d_2 \beta^{-2}+\cdots+d_{p-1} \beta^{-(p-1)}\right) \beta^e, 0 \leq d_i<\beta
##
__________________________________________________________________________________________________________

I've been reading A Concise Introduction to Numerical Analysis by A. C. Faul and I've been inquiring about the number of bits required to represent a number in floating point representation with base ## \beta ##, precision ## p ## and maximum and minimum exponents ## e_{\max}, e_{\min}##.

Here's the author's calculation:

The largest and smallest allowable exponents are denoted ##e_{\max }## and ##e_{\min }##, respectively. Note that ##e_{\max }## is positive, while ##e_{\min }## is negative. Thus there are ##e_{\max }-e_{\min }+1## possible exponents, the +1 standing for the zero exponent. Since there are ##\beta^p## possible significands, a floating-point number can be encoded in ##\left[\log _2\left(e_{\max }-e_{\min }+1\right)\right]+\left[\log _2\left(\beta^p\right)\right]+1## bits where the final +1 is for the sign bit.

My question: how did the author arrive to ##\left[\log _2\left(e_{\max }-e_{\min }+1\right)\right]+\left[\log _2\left(\beta^p\right)\right]+1## ?

I tried as follows but didn't succeed: the number is ##\pm d_0 \cdot d_1 \cdots d_{p-1} \times \beta^e##, each of ## d_i ## is at most ## \beta ## and since the largest exponent is ## e_{\max} ## then the largest number possible is ## \beta . \beta \cdots \beta \times \beta^{e_{\max}} ##, hence the number of bits is ( add one for plus/minus sign ) ## \lfloor log_2( { \beta^p \cdot \beta^{e_{\max}} }) \rfloor +1 = \lfloor log_2( { \beta^p}) + log_2({ \beta^{e_{\max}} }) \rfloor + 1 ##
 
Computer science news on Phys.org
You have neglected to take account of how the number is actually encoded.

The number <br /> (-1)^S \times d_0.d_1d_2\dots d_{p-1} \times \beta^{e_{\mathrm{min}} + (e - e_{\mathrm{min}})} is encoded as the N_1 + N_2 + 1 digit binary integer <br /> S\;D_1D_2\dots D_{N_2}\;E_1E_2\dots E_{N_1} where S is the sign bit, D_1D_2 \dots D_{N_2} is the binary representation of 0 \leq d_0d_1\dots d_{p-1} \leq \beta^p - 1 and E_1 \dots E_{N_1} is the binary representation of 0 \leq e - e_{\mathrm{min}} \leq e_{\mathrm{max}} - e_{\mathrm{min}}. The maximum integer which can be represented with N binary digits is 1 + 2 + \dots + 2^{N-1} = 2^N - 1 so we require \begin{split}<br /> N_1 &amp;\geq \log_2(e_{\mathrm{max}} - e_{\mathrm{min}} + 1), \\<br /> N_2 &amp;\geq \log_2(\beta^p). \end{split} The minumum necessary numbers of binary digits are therefore \begin{split}<br /> N_1 &amp;= \lceil \log_2(e_{\mathrm{max}} - e_{\mathrm{min}} + 1) \rceil, \\<br /> N_2 &amp;= \lceil \log_2(\beta^p) \rceil, \end{split} where \lceil x \rceil is the smallest integer greater than or equal to x.
 
  • Like
Likes CGandC and Vanadium 50
If a specific example would help, you might look up how IEEE 754 does things.
 
CGandC said:
I tried as follows but didn't succeed: the number is ##\pm d_0 \cdot d_1 \cdots d_{p-1} \times \beta^e##, each of ## d_i ## is at most ## \beta ##
The "is at most ##\beta##" part is incorrect. Whatever the base ##\beta## is, each digit ##d_i## must be less than ##\beta##.
In base-2, the digits are 0 and 1.
In base-8, the digits are 0, 1, 2, 3, 4, 5, 6, and 7.
In decimal (base-10), the largest digit is 9.
 
Thanks for help! I understand now.
 
In my discussions elsewhere, I've noticed a lot of disagreement regarding AI. A question that comes up is, "Is AI hype?" Unfortunately, when this question is asked, the one asking, as far as I can tell, may mean one of three things which can lead to lots of confusion. I'll list them out now for clarity. 1. Can AI do everything a human can do and how close are we to that? 2. Are corporations and governments using the promise of AI to gain more power for themselves? 3. Are AI and transhumans...
Thread 'ChatGPT Examples, Good and Bad'
I've been experimenting with ChatGPT. Some results are good, some very very bad. I think examples can help expose the properties of this AI. Maybe you can post some of your favorite examples and tell us what they reveal about the properties of this AI. (I had problems with copy/paste of text and formatting, so I'm posting my examples as screen shots. That is a promising start. :smile: But then I provided values V=1, R1=1, R2=2, R3=3 and asked for the value of I. At first, it said...
Back
Top