Number of non negative integer solutions to this inequality

Click For Summary
The discussion focuses on finding the number of non-negative integer solutions to the inequality x1 + x2 + x3 + x4 + x5 < 11. For part (i), the correct approach involves summing solutions for x1 + x2 + x3 + x4 + x5 equal to values from 0 to 10, leading to a total of 3003 solutions. In part (ii), if x1 > 3, the equation is adjusted to x2 + x3 + x4 + x5 < 8, yielding 330 solutions. Part (iii) examines the scenario where each xi < 3, resulting in 3^5 solutions. The discussion highlights the importance of correctly interpreting the conditions for each part of the problem.
Woolyabyss
Messages
142
Reaction score
1

Homework Statement


How many non-negative integer solutions are there to the equation
x1 + x2 + x3 + x4 + x5 < 11,
(i)if there are no restrictions?
(ii)How many solutions are there if x1 > 3?
(iii)How many solutions are there if each xi < 3?

Homework Equations


N/A

The Attempt at a Solution


(i) inequality equivalent to equality x1 + x2 + x3 + x4 + x5 + x6 = 10
(n+k-1)choose(k-1) = (10+6-1)choose(6-1) = 3003

(ii) if x1 > 3 ------------> x2 + x3 + x4 + x5 < 8
equality equivalent x2 + x3 + x4 + x5 +x6 = 7
again (7+5-1)choose(4) = 330

(iii)
Its this part I'm not certain about

like in (ii) let x1 instead be > 3 we find 7+5-1)choose(4) = 330

now let x1 and x2 be > 3
we find x3 + x4 + x5 < 5
----> x3 + x4 + x5 +x6 = 4
(4+4-1)choose(4-1) =35

finally let x1,x2 and x3 >3
then x4 +x5 <2
equality x4 + x5 + x6 =1
(1+3-1)choose(2) = 3

answer: 3003 - 35 - 330 - 3 = 2635

any help would be appreciated.
 
Physics news on Phys.org
You made a small error in (ii). If x1>3 then x1>=?
(iii) is actually the easiest of the questions. If every term is under 3, and there are only 5 terms...
 
  • Like
Likes Woolyabyss
haruspex said:
You made a small error in (ii). If x1>3 then x1>=?
(iii) is actually the easiest of the questions. If every term is under 3, and there are only 5 terms...

is this correct?
(ii)
If x1>3 then x1 >= 4
if x1 >= 4 ------------> x2 + x3 + x4 + x5 < 7
equality equivalent x2 + x3 + x4 + x5 + x6 = 6
(6+5-1)choose(5-1)
(iii) since xi < 3
each term can be 0,1 or 2
so 3^5
 
Woolyabyss said:
is this correct?
(ii)
If x1>3 then x1 >= 4
if x1 >= 4 ------------> x2 + x3 + x4 + x5 < 7
equality equivalent x2 + x3 + x4 + x5 + x6 = 6
(6+5-1)choose(5-1)
(iii) since xi < 3
each term can be 0,1 or 2
so 3^5
Looks right to me.
 
  • Like
Likes Woolyabyss
Woolyabyss said:

Homework Statement


How many non-negative integer solutions are there to the equation
x1 + x2 + x3 + x4 + x5 < 11,
(i)if there are no restrictions?
(ii)How many solutions are there if x1 > 3?
(iii)How many solutions are there if each xi < 3?

Homework Equations


N/A

The Attempt at a Solution


(i) inequality equivalent to equality x1 + x2 + x3 + x4 + x5 + x6 = 10
(n+k-1)choose(k-1) = (10+6-1)choose(6-1) = 3003

(ii) if x1 > 3 ------------> x2 + x3 + x4 + x5 < 8
equality equivalent x2 + x3 + x4 + x5 +x6 = 7
again (7+5-1)choose(4) = 330

(iii)
Its this part I'm not certain about

like in (ii) let x1 instead be > 3 we find 7+5-1)choose(4) = 330

now let x1 and x2 be > 3
we find x3 + x4 + x5 < 5
----> x3 + x4 + x5 +x6 = 4
(4+4-1)choose(4-1) =35

finally let x1,x2 and x3 >3
then x4 +x5 <2
equality x4 + x5 + x6 =1
(1+3-1)choose(2) = 3

answer: 3003 - 35 - 330 - 3 = 2635

any help would be appreciated.

You have part (i) wrong: the totality of non-negative integer solutions to ##x_1+x_2+x_3+x_4+x_5 < 11## is all the solutions to ##\sum x_i = 0## plus all the solutions to ##\sum x_i = 1##, plus ... plus all the solutions to ##\sum x_i = 9## plus all the solutions to ##\sum x_i = 10##. These all have sums < 11, as requested.

The solutions to other parts will be similarly affected.
 
Ray Vickson said:
You have part (i) wrong: the totality of non-negative integer solutions to ##x_1+x_2+x_3+x_4+x_5 < 11## is all the solutions to ##\sum x_i = 0## plus all the solutions to ##\sum x_i = 1##, plus ... plus all the solutions to ##\sum x_i = 9## plus all the solutions to ##\sum x_i = 10##.
Did the trick of introducing a sixth unknown to take up the slack not resolve that?
 
haruspex said:
Did the trick of introducing a sixth unknown to take up the slack not resolve that?

Yes, it does, but I missed that!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 2 ·
Replies
2
Views
647
  • · Replies 1 ·
Replies
1
Views
813
Replies
5
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
4
Views
2K